Federated deep learning for detecting COVID-19 lung abnormalities in CT: a privacy-preserving multinational validation study
Abstract Data privacy mechanisms are essential for rapidly scaling medical training databases to capture the heterogeneity of patient data distributions toward robust and generalizable machine learning systems. In the current COVID-19 pandemic, a major focus of artificial intelligence (AI) is interp...
Enregistré dans:
Auteurs principaux: | Qi Dou, Tiffany Y. So, Meirui Jiang, Quande Liu, Varut Vardhanabhuti, Georgios Kaissis, Zeju Li, Weixin Si, Heather H. C. Lee, Kevin Yu, Zuxin Feng, Li Dong, Egon Burian, Friederike Jungmann, Rickmer Braren, Marcus Makowski, Bernhard Kainz, Daniel Rueckert, Ben Glocker, Simon C. H. Yu, Pheng Ann Heng |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/340f463aed8748e1b87b2603e67e7d80 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Medical imaging deep learning with differential privacy
par: Alexander Ziller, et autres
Publié: (2021) -
Efficient, high-performance semantic segmentation using multi-scale feature extraction.
par: Moritz Knolle, et autres
Publié: (2021) -
Chest-Related Imaging Investigations During Multiple Waves of COVID-19 Infection in Hong Kong
par: Kei Shing Ng, et autres
Publié: (2021) -
Location privacy protection scheme for LBS users based ondifferential privacy
par: Naiwen YU, et autres
Publié: (2021) -
Multinational monitor
Publié: (1980)