User adaptation in Myoelectric Man-Machine Interfaces
Abstract State of the art clinical hand prostheses are controlled in a simple and limited way that allows the activation of one function at a time. More advanced laboratory approaches, based on machine learning, offer a significant increase in functionality, but their clinical impact is limited, mai...
Guardado en:
Autores principales: | Janne M. Hahne, Marko Markovic, Dario Farina |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3415318875e1482d9f59bb951700536c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Differential experiences of embodiment between body-powered and myoelectric prosthesis users
por: Susannah M. Engdahl, et al.
Publicado: (2020) -
Joint speed feedback improves myoelectric prosthesis adaptation after perturbed reaches in non amputees
por: Eric J. Earley, et al.
Publicado: (2021) -
Sensitivity and specificity of hypnosis effects on gastric myoelectrical activity.
por: Paul Enck, et al.
Publicado: (2013) -
A co-adaptive brain-computer interface for end users with severe motor impairment.
por: Josef Faller, et al.
Publicado: (2014) -
Adaptive attention-based human machine interface system for teleoperation of industrial vehicle
por: Jouh Yeong Chew, et al.
Publicado: (2021)