A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI

Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adult patients with a median survival of around one year. Prediction of survival outcomes in GBM patients could represent a huge step in treatment personalization. The objective of this study was to develop machine learning...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Samy Ammari, Raoul Sallé de Chou, Corinne Balleyguier, Emilie Chouzenoux, Mehdi Touat, Arnaud Quillent, Sarah Dumont, Sophie Bockel, Gabriel C. T. E. Garcia, Mickael Elhaik, Bidault Francois, Valentin Borget, Nathalie Lassau, Mohamed Khettab, Tarek Assi
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/3428d18c49c14d4880c655f172cab863
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3428d18c49c14d4880c655f172cab863
record_format dspace
spelling oai:doaj.org-article:3428d18c49c14d4880c655f172cab8632021-11-25T17:21:09ZA Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI10.3390/diagnostics111120432075-4418https://doaj.org/article/3428d18c49c14d4880c655f172cab8632021-11-01T00:00:00Zhttps://www.mdpi.com/2075-4418/11/11/2043https://doaj.org/toc/2075-4418Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adult patients with a median survival of around one year. Prediction of survival outcomes in GBM patients could represent a huge step in treatment personalization. The objective of this study was to develop machine learning (ML) algorithms for survival prediction of GBM patient. We identified a radiomic signature on a training-set composed of data from the 2019 BraTS challenge (210 patients) from MRI retrieved at diagnosis. Then, using this signature along with the age of the patients for training classification models, we obtained on test-sets AUCs of 0.85, 0.74 and 0.58 (0.92, 0.88 and 0.75 on the training-sets) for survival at 9-, 12- and 15-months, respectively. This signature was then validated on an independent cohort of 116 GBM patients with confirmed disease relapse for the prediction of patients surviving less or more than the median OS of 22 months. Our model insured an AUC of 0.71 (0.65 on train). The Kaplan–Meier method showed significant OS difference between groups (log-rank <i>p</i> = 0.05). These results suggest that radiomic signatures may improve survival outcome predictions in GBM thus creating a solid clinical tool for tailoring therapy in this population.Samy AmmariRaoul Sallé de ChouCorinne BalleyguierEmilie ChouzenouxMehdi TouatArnaud QuillentSarah DumontSophie BockelGabriel C. T. E. GarciaMickael ElhaikBidault FrancoisValentin BorgetNathalie LassauMohamed KhettabTarek AssiMDPI AGarticleglioblastomabiomarkerradiomicsmachine learningMedicine (General)R5-920ENDiagnostics, Vol 11, Iss 2043, p 2043 (2021)
institution DOAJ
collection DOAJ
language EN
topic glioblastoma
biomarker
radiomics
machine learning
Medicine (General)
R5-920
spellingShingle glioblastoma
biomarker
radiomics
machine learning
Medicine (General)
R5-920
Samy Ammari
Raoul Sallé de Chou
Corinne Balleyguier
Emilie Chouzenoux
Mehdi Touat
Arnaud Quillent
Sarah Dumont
Sophie Bockel
Gabriel C. T. E. Garcia
Mickael Elhaik
Bidault Francois
Valentin Borget
Nathalie Lassau
Mohamed Khettab
Tarek Assi
A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI
description Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adult patients with a median survival of around one year. Prediction of survival outcomes in GBM patients could represent a huge step in treatment personalization. The objective of this study was to develop machine learning (ML) algorithms for survival prediction of GBM patient. We identified a radiomic signature on a training-set composed of data from the 2019 BraTS challenge (210 patients) from MRI retrieved at diagnosis. Then, using this signature along with the age of the patients for training classification models, we obtained on test-sets AUCs of 0.85, 0.74 and 0.58 (0.92, 0.88 and 0.75 on the training-sets) for survival at 9-, 12- and 15-months, respectively. This signature was then validated on an independent cohort of 116 GBM patients with confirmed disease relapse for the prediction of patients surviving less or more than the median OS of 22 months. Our model insured an AUC of 0.71 (0.65 on train). The Kaplan–Meier method showed significant OS difference between groups (log-rank <i>p</i> = 0.05). These results suggest that radiomic signatures may improve survival outcome predictions in GBM thus creating a solid clinical tool for tailoring therapy in this population.
format article
author Samy Ammari
Raoul Sallé de Chou
Corinne Balleyguier
Emilie Chouzenoux
Mehdi Touat
Arnaud Quillent
Sarah Dumont
Sophie Bockel
Gabriel C. T. E. Garcia
Mickael Elhaik
Bidault Francois
Valentin Borget
Nathalie Lassau
Mohamed Khettab
Tarek Assi
author_facet Samy Ammari
Raoul Sallé de Chou
Corinne Balleyguier
Emilie Chouzenoux
Mehdi Touat
Arnaud Quillent
Sarah Dumont
Sophie Bockel
Gabriel C. T. E. Garcia
Mickael Elhaik
Bidault Francois
Valentin Borget
Nathalie Lassau
Mohamed Khettab
Tarek Assi
author_sort Samy Ammari
title A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI
title_short A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI
title_full A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI
title_fullStr A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI
title_full_unstemmed A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI
title_sort predictive clinical-radiomics nomogram for survival prediction of glioblastoma using mri
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/3428d18c49c14d4880c655f172cab863
work_keys_str_mv AT samyammari apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT raoulsalledechou apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT corinneballeyguier apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT emiliechouzenoux apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT mehditouat apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT arnaudquillent apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT sarahdumont apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT sophiebockel apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT gabrielctegarcia apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT mickaelelhaik apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT bidaultfrancois apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT valentinborget apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT nathalielassau apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT mohamedkhettab apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT tarekassi apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT samyammari predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT raoulsalledechou predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT corinneballeyguier predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT emiliechouzenoux predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT mehditouat predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT arnaudquillent predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT sarahdumont predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT sophiebockel predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT gabrielctegarcia predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT mickaelelhaik predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT bidaultfrancois predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT valentinborget predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT nathalielassau predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT mohamedkhettab predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
AT tarekassi predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri
_version_ 1718412462016954368