A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI
Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adult patients with a median survival of around one year. Prediction of survival outcomes in GBM patients could represent a huge step in treatment personalization. The objective of this study was to develop machine learning...
Guardado en:
Autores principales: | Samy Ammari, Raoul Sallé de Chou, Corinne Balleyguier, Emilie Chouzenoux, Mehdi Touat, Arnaud Quillent, Sarah Dumont, Sophie Bockel, Gabriel C. T. E. Garcia, Mickael Elhaik, Bidault Francois, Valentin Borget, Nathalie Lassau, Mohamed Khettab, Tarek Assi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3428d18c49c14d4880c655f172cab863 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
MRI-Based Bone Marrow Radiomics Nomogram for Prediction of Overall Survival in Patients With Multiple Myeloma
por: Yang Li, et al.
Publicado: (2021) -
Development and validation of a prognostic nomogram for malignant esophageal fistula based on radiomics and clinical factors
por: Chao Zhu, et al.
Publicado: (2021) -
Multiple Survival Outcome Prediction of Glioblastoma Patients Based on Multiparametric MRI
por: Bin Wang, et al.
Publicado: (2021) -
CT-based Radiomics to Predict Recurrence of Bladder Cancer after Resection in One Year: A Preliminary Study
por: ZHANG Gumuyang, et al.
Publicado: (2021) -
A Novel Clinical Radiomics Nomogram to Identify Crohn’s Disease from Intestinal Tuberculosis
por: Zhu C, et al.
Publicado: (2021)