A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI
Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adult patients with a median survival of around one year. Prediction of survival outcomes in GBM patients could represent a huge step in treatment personalization. The objective of this study was to develop machine learning...
Enregistré dans:
Auteurs principaux: | Samy Ammari, Raoul Sallé de Chou, Corinne Balleyguier, Emilie Chouzenoux, Mehdi Touat, Arnaud Quillent, Sarah Dumont, Sophie Bockel, Gabriel C. T. E. Garcia, Mickael Elhaik, Bidault Francois, Valentin Borget, Nathalie Lassau, Mohamed Khettab, Tarek Assi |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3428d18c49c14d4880c655f172cab863 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
MRI-Based Bone Marrow Radiomics Nomogram for Prediction of Overall Survival in Patients With Multiple Myeloma
par: Yang Li, et autres
Publié: (2021) -
Development and validation of a prognostic nomogram for malignant esophageal fistula based on radiomics and clinical factors
par: Chao Zhu, et autres
Publié: (2021) -
Multiple Survival Outcome Prediction of Glioblastoma Patients Based on Multiparametric MRI
par: Bin Wang, et autres
Publié: (2021) -
CT-based Radiomics to Predict Recurrence of Bladder Cancer after Resection in One Year: A Preliminary Study
par: ZHANG Gumuyang, et autres
Publié: (2021) -
A Novel Clinical Radiomics Nomogram to Identify Crohn’s Disease from Intestinal Tuberculosis
par: Zhu C, et autres
Publié: (2021)