Spectrum evolution of Rayleigh backscattering in one-dimensional waveguide
Despite the tremendous awareness of Rayleigh scattering characteristics and its considerable research interest for numerous fields, no report has been documented on the dynamic characteristics of spectrum evolution (SpE) and physical law for Rayleigh scattering from a micro perspective. Herein, the...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Institue of Optics and Electronics, Chinese Academy of Sciences
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/34448ac30c0f4195b52c33d2ddcb56d7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:34448ac30c0f4195b52c33d2ddcb56d7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:34448ac30c0f4195b52c33d2ddcb56d72021-11-11T09:53:13ZSpectrum evolution of Rayleigh backscattering in one-dimensional waveguide2096-457910.29026/oea.2019.190012https://doaj.org/article/34448ac30c0f4195b52c33d2ddcb56d72019-08-01T00:00:00Zhttp://www.oejournal.org/article/doi/10.29026/oea.2019.190012https://doaj.org/toc/2096-4579Despite the tremendous awareness of Rayleigh scattering characteristics and its considerable research interest for numerous fields, no report has been documented on the dynamic characteristics of spectrum evolution (SpE) and physical law for Rayleigh scattering from a micro perspective. Herein, the dynamic characteristics of the SpE of Rayleigh scattering in a one-dimensional waveguide (ODW) is investigated based on the quantum theory and a SpE-model of Rayleigh backscattering (RBS) source is established. By means of simulation, the evolution law which represents the dynamic process of the spectrum linewidth at a state of continuous scattering is revealed, which is consistent with our previous experimental observation. Moreover, an approximate theoretical prediction of the existing relationship between the spectrum linewidth of RBS source and the transmission length in ODW is proposed, which theoretically provides the feasibility of constructing functional devices suitable to ascertain laser linewidth compression. The designed experimental scheme can be implemented provided the assumptions are fulfilled. In addition, a theoretical model of the micro-cavity structure to realize the deep compression of laser linewidth is proposed.Li FuhuiLan TianyiHuang LigangIkechukwu Iroegbu PaulLiu WumingZhu TaoInstitue of Optics and Electronics, Chinese Academy of Sciencesarticlescatteringrayleighspectrum evolutionlinewidthfunctional deviceOptics. LightQC350-467ENOpto-Electronic Advances, Vol 2, Iss 8, Pp 190012-1-190012-7 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
scattering rayleigh spectrum evolution linewidth functional device Optics. Light QC350-467 |
spellingShingle |
scattering rayleigh spectrum evolution linewidth functional device Optics. Light QC350-467 Li Fuhui Lan Tianyi Huang Ligang Ikechukwu Iroegbu Paul Liu Wuming Zhu Tao Spectrum evolution of Rayleigh backscattering in one-dimensional waveguide |
description |
Despite the tremendous awareness of Rayleigh scattering characteristics and its considerable research interest for numerous fields, no report has been documented on the dynamic characteristics of spectrum evolution (SpE) and physical law for Rayleigh scattering from a micro perspective. Herein, the dynamic characteristics of the SpE of Rayleigh scattering in a one-dimensional waveguide (ODW) is investigated based on the quantum theory and a SpE-model of Rayleigh backscattering (RBS) source is established. By means of simulation, the evolution law which represents the dynamic process of the spectrum linewidth at a state of continuous scattering is revealed, which is consistent with our previous experimental observation. Moreover, an approximate theoretical prediction of the existing relationship between the spectrum linewidth of RBS source and the transmission length in ODW is proposed, which theoretically provides the feasibility of constructing functional devices suitable to ascertain laser linewidth compression. The designed experimental scheme can be implemented provided the assumptions are fulfilled. In addition, a theoretical model of the micro-cavity structure to realize the deep compression of laser linewidth is proposed. |
format |
article |
author |
Li Fuhui Lan Tianyi Huang Ligang Ikechukwu Iroegbu Paul Liu Wuming Zhu Tao |
author_facet |
Li Fuhui Lan Tianyi Huang Ligang Ikechukwu Iroegbu Paul Liu Wuming Zhu Tao |
author_sort |
Li Fuhui |
title |
Spectrum evolution of Rayleigh backscattering in one-dimensional waveguide |
title_short |
Spectrum evolution of Rayleigh backscattering in one-dimensional waveguide |
title_full |
Spectrum evolution of Rayleigh backscattering in one-dimensional waveguide |
title_fullStr |
Spectrum evolution of Rayleigh backscattering in one-dimensional waveguide |
title_full_unstemmed |
Spectrum evolution of Rayleigh backscattering in one-dimensional waveguide |
title_sort |
spectrum evolution of rayleigh backscattering in one-dimensional waveguide |
publisher |
Institue of Optics and Electronics, Chinese Academy of Sciences |
publishDate |
2019 |
url |
https://doaj.org/article/34448ac30c0f4195b52c33d2ddcb56d7 |
work_keys_str_mv |
AT lifuhui spectrumevolutionofrayleighbackscatteringinonedimensionalwaveguide AT lantianyi spectrumevolutionofrayleighbackscatteringinonedimensionalwaveguide AT huangligang spectrumevolutionofrayleighbackscatteringinonedimensionalwaveguide AT ikechukwuiroegbupaul spectrumevolutionofrayleighbackscatteringinonedimensionalwaveguide AT liuwuming spectrumevolutionofrayleighbackscatteringinonedimensionalwaveguide AT zhutao spectrumevolutionofrayleighbackscatteringinonedimensionalwaveguide |
_version_ |
1718439204084514816 |