Simulation of solute transport behaviors in saturated karst aquifer system
Abstract The karst development makes aquifer have strong anisotropy and heterogeneity. In order to reveal the characteristics of solute transport in the karst fissure–conduit aquifer system, this study presents a physical model of fissure–conduit in laboratory experiments to carry out the solute tra...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3458474ddeaf4de8bdd31c279dc5ada9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3458474ddeaf4de8bdd31c279dc5ada9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3458474ddeaf4de8bdd31c279dc5ada92021-12-02T17:06:33ZSimulation of solute transport behaviors in saturated karst aquifer system10.1038/s41598-021-94950-72045-2322https://doaj.org/article/3458474ddeaf4de8bdd31c279dc5ada92021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-94950-7https://doaj.org/toc/2045-2322Abstract The karst development makes aquifer have strong anisotropy and heterogeneity. In order to reveal the characteristics of solute transport in the karst fissure–conduit aquifer system, this study presents a physical model of fissure–conduit in laboratory experiments to carry out the solute transport simulation. In this paper, the tracer tests of fissure–conduit combination, fissure, and conduit solute transport process in saturated flow are designed. We found that different aquifer structures and tracer injection points have an influence on the shape of the breakthrough curve. Besides, the two-dimensional dispersion model of tracer injection of the instantaneous point was used to calculate the dispersion parameters of each group of experiments. Then, the dynamic responses of the linear distance (x) between the injection point and the receiving point, initial time (t 0), peak time (t m), peak concentration (c m), average tracer transport velocity (V), and porosity (p) of aqueous media to the longitudinal dispersion coefficient are discussed. In addition, according to the measured data, Gaussian multi-peak fitting can be used to reflect the overall shape and change trend of the multi-peak BTC. These results demonstrate the solute transport behaviors in the saturated karst aquifer system, which have important reference significance for solving the engineering environmental problems in the karst area.Xuewei ChuHanghang DingXuemei ZhangNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-17 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Xuewei Chu Hanghang Ding Xuemei Zhang Simulation of solute transport behaviors in saturated karst aquifer system |
description |
Abstract The karst development makes aquifer have strong anisotropy and heterogeneity. In order to reveal the characteristics of solute transport in the karst fissure–conduit aquifer system, this study presents a physical model of fissure–conduit in laboratory experiments to carry out the solute transport simulation. In this paper, the tracer tests of fissure–conduit combination, fissure, and conduit solute transport process in saturated flow are designed. We found that different aquifer structures and tracer injection points have an influence on the shape of the breakthrough curve. Besides, the two-dimensional dispersion model of tracer injection of the instantaneous point was used to calculate the dispersion parameters of each group of experiments. Then, the dynamic responses of the linear distance (x) between the injection point and the receiving point, initial time (t 0), peak time (t m), peak concentration (c m), average tracer transport velocity (V), and porosity (p) of aqueous media to the longitudinal dispersion coefficient are discussed. In addition, according to the measured data, Gaussian multi-peak fitting can be used to reflect the overall shape and change trend of the multi-peak BTC. These results demonstrate the solute transport behaviors in the saturated karst aquifer system, which have important reference significance for solving the engineering environmental problems in the karst area. |
format |
article |
author |
Xuewei Chu Hanghang Ding Xuemei Zhang |
author_facet |
Xuewei Chu Hanghang Ding Xuemei Zhang |
author_sort |
Xuewei Chu |
title |
Simulation of solute transport behaviors in saturated karst aquifer system |
title_short |
Simulation of solute transport behaviors in saturated karst aquifer system |
title_full |
Simulation of solute transport behaviors in saturated karst aquifer system |
title_fullStr |
Simulation of solute transport behaviors in saturated karst aquifer system |
title_full_unstemmed |
Simulation of solute transport behaviors in saturated karst aquifer system |
title_sort |
simulation of solute transport behaviors in saturated karst aquifer system |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/3458474ddeaf4de8bdd31c279dc5ada9 |
work_keys_str_mv |
AT xueweichu simulationofsolutetransportbehaviorsinsaturatedkarstaquifersystem AT hanghangding simulationofsolutetransportbehaviorsinsaturatedkarstaquifersystem AT xuemeizhang simulationofsolutetransportbehaviorsinsaturatedkarstaquifersystem |
_version_ |
1718381546851794944 |