Accuracy of Kinovea software in estimating body segment movements during falls captured on standard video: Effects of fall direction, camera perspective and video calibration technique
Falls are a major cause of unintentional injuries. Understanding the movements of the body during falls is important to the design of fall prevention and management strategies, including exercise programs, mobility aids, fall detectors, protective gear, and safer environments. Video footage of real-...
Guardado en:
Autores principales: | Nataliya Shishov, Karam Elabd, Vicki Komisar, Helen Chong, Stephen N. Robinovitch |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/345bffee743b44dda1b8356cca9af663 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Accuracy of Kinovea software in estimating body segment movements during falls captured on standard video: Effects of fall direction, camera perspective and video calibration technique.
por: Nataliya Shishov, et al.
Publicado: (2021) -
Comparison of Camera Calibration and Measurement Accuracy Techniques for Phase Measuring Deflectometry
por: Renhao Ge, et al.
Publicado: (2021) -
An eight-camera fall detection system using human fall pattern recognition via machine learning by a low-cost android box
por: Francy Shu, et al.
Publicado: (2021) -
Report on In-Class Variables: Fall 1987 & Fall 1992
Publicado: (2000) -
Let the Chips Fall Where They May: Evaluating the Impact and Effectiveness of Video Resources for Knowledge Transfer in Flint Knapping
por: John Kiernan
Publicado: (2020)