Analysis and correction of meteorological disturbance observed by ground radars in complex environment.
Ground radar interferometry technology, as a new tool for active remote sensing, has been widely used in the detection of a variety of targets, including landslides, bridges, mines, and dams. This technique usually employs a continuous observation mode with no space baseline. The detection accuracy...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3463eefff0a441c89560a885326fa320 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Ground radar interferometry technology, as a new tool for active remote sensing, has been widely used in the detection of a variety of targets, including landslides, bridges, mines, and dams. This technique usually employs a continuous observation mode with no space baseline. The detection accuracy is mainly affected by meteorological disturbances and noise in the observation environment. In a complex observation environment, meteorological disturbances can lead to phase errors of 10 mm or more, and the effects are different in the range and azimuth directions; this can seriously affect the accuracy of the measurement. In this paper, we analyze the spatial distribution of the phase of meteorological disturbances based on radar monitoring experiments in a complex environment, and propose a correction method that reduces the atmospheric disturbance phase to less than 0.6 mm and effectively improves radar observation accuracy. |
---|