Reinforcement learning derived chemotherapeutic schedules for robust patient-specific therapy
Abstract The in-silico development of a chemotherapeutic dosing schedule for treating cancer relies upon a parameterization of a particular tumour growth model to describe the dynamics of the cancer in response to the dose of the drug. In practice, it is often prohibitively difficult to ensure the v...
Enregistré dans:
Auteurs principaux: | , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/346e4b6869474fd3982e56778d98ce5a |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Soyez le premier à ajouter un commentaire!