Early outcome detection for COVID-19 patients
Abstract With the outbreak of COVID-19 exerting a strong pressure on hospitals and health facilities, clinical decision support systems based on predictive models can help to effectively improve the management of the pandemic. We present a method for predicting mortality for COVID-19 patients. Start...
Enregistré dans:
Auteurs principaux: | Alina Sîrbu, Greta Barbieri, Francesco Faita, Paolo Ferragina, Luna Gargani, Lorenzo Ghiadoni, Corrado Priami |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/34716b8d4543467a9ae9c449c07676a4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
The relationship between cardiac injury, inflammation and coagulation in predicting COVID-19 outcome
par: Alessandro Mengozzi, et autres
Publié: (2021) -
Budget constrained machine learning for early prediction of adverse outcomes for COVID-19 patients
par: Sam Nguyen, et autres
Publié: (2021) -
Soluble Urokinase Receptor as a Promising Marker for Early Prediction of Outcome in COVID-19 Hospitalized Patients
par: Filomena Napolitano, et autres
Publié: (2021) -
Noninvasive Detection of Respiratory Disorder Due to COVID-19 at the Early Stages in Saudi Arabia
par: Wadii Boulila, et autres
Publié: (2021) -
MR-proADM as prognostic factor of outcome in COVID-19 patients
par: Emanuela Sozio, et autres
Publié: (2021)