The lytic polysaccharide monooxygenase CbpD promotes Pseudomonas aeruginosa virulence in systemic infection

The Pseudomonas aeruginosa lytic polysaccharide monooxygenase CbpD, prevalent in clinical isolates, has been proposed to act as a virulence factor. Here, the authors combine structural work, in silico simulations, enzymatic activity and in vitro and in vivo experiments to further delineate the role...

Full description

Saved in:
Bibliographic Details
Main Authors: Fatemeh Askarian, Satoshi Uchiyama, Helen Masson, Henrik Vinther Sørensen, Ole Golten, Anne Cathrine Bunæs, Sophanit Mekasha, Åsmund Kjendseth Røhr, Eirik Kommedal, Judith Anita Ludviksen, Magnus Ø. Arntzen, Benjamin Schmidt, Raymond H. Zurich, Nina M. van Sorge, Vincent G. H. Eijsink, Ute Krengel, Tom Eirik Mollnes, Nathan E. Lewis, Victor Nizet, Gustav Vaaje-Kolstad
Format: article
Language:EN
Published: Nature Portfolio 2021
Subjects:
Q
Online Access:https://doaj.org/article/3489cf0fa4cd4b18b05a1a1e7e7583d6
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Pseudomonas aeruginosa lytic polysaccharide monooxygenase CbpD, prevalent in clinical isolates, has been proposed to act as a virulence factor. Here, the authors combine structural work, in silico simulations, enzymatic activity and in vitro and in vivo experiments to further delineate the role of CbpD and show that its deletion renders P. aeruginosa unable to establish a lethal systemic infection, leading to enhanced bacterial clearance in a mouse model of infection.