Super-hard “Tanghulu”: cubic BP microwire covered with amorphous SiO2 balls
Superhard materials, which are widely used in metallurgy, petroleum drilling, and mechanical processing, have become the key to the development of processing and manufacturing industry. Boron phosphide is an excellent Superhard candidate material with excellent inert, high thermostability and heat c...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/348df46f0adb4388a6e7229f291010ee |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Superhard materials, which are widely used in metallurgy, petroleum drilling, and mechanical processing, have become the key to the development of processing and manufacturing industry. Boron phosphide is an excellent Superhard candidate material with excellent inert, high thermostability and heat conductivity. However, since synthesizing BP is a hard task, studies of its basic physical properties and applications are hindered to some extent. Here, we obtained a micron-scale “Tanghulu”, in the process of synthesizing boron phosphide single crystals using high-temperature flux method. Under a special appearance, ''Tanghulu'' is a superhard BP microwire covered by melted or amorphous SiO2 and the hardness of the BP microwires is 40.16GPa. On the basis of a comprehensive material analysis, we established the formation mechanism of this Superhard “Tanghulu” as follows: during the heating process with continuous high temperature, SiO2 molecules on the wall of quartz tube escape and diffuse freely and adhere to the boron phosphide rod-shaped single crystal, which will aggregate then under the effect of surface tension to form an isotropic spherical amorphous SiO2 and form the “Tanghulu” finally. Our work can help to broaden the understanding of micro-scale materials. |
---|