Identifying hidden coalitions in the US House of Representatives by optimally partitioning signed networks based on generalized balance
Abstract In network science, identifying optimal partitions of a signed network into internally cohesive and mutually divisive clusters based on generalized balance theory is computationally challenging. We reformulate and generalize two binary linear programming models that tackle this challenge, d...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/34a0bce2163942f3b3faba2aff7cd3db |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:34a0bce2163942f3b3faba2aff7cd3db |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:34a0bce2163942f3b3faba2aff7cd3db2021-12-02T18:37:09ZIdentifying hidden coalitions in the US House of Representatives by optimally partitioning signed networks based on generalized balance10.1038/s41598-021-98139-w2045-2322https://doaj.org/article/34a0bce2163942f3b3faba2aff7cd3db2021-10-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-98139-whttps://doaj.org/toc/2045-2322Abstract In network science, identifying optimal partitions of a signed network into internally cohesive and mutually divisive clusters based on generalized balance theory is computationally challenging. We reformulate and generalize two binary linear programming models that tackle this challenge, demonstrating their practicality by applying them to partition signed networks of collaboration and opposition in the US House of Representatives. These models guarantee a globally optimal network partition and can be practically applied to signed networks containing up to 30,000 edges. In the US House context, we find that a three-cluster partition is better than a conventional two-cluster partition, where the otherwise hidden third coalition is composed of highly effective legislators who are ideologically aligned with the majority party.Samin ArefZachary P. NealNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Samin Aref Zachary P. Neal Identifying hidden coalitions in the US House of Representatives by optimally partitioning signed networks based on generalized balance |
description |
Abstract In network science, identifying optimal partitions of a signed network into internally cohesive and mutually divisive clusters based on generalized balance theory is computationally challenging. We reformulate and generalize two binary linear programming models that tackle this challenge, demonstrating their practicality by applying them to partition signed networks of collaboration and opposition in the US House of Representatives. These models guarantee a globally optimal network partition and can be practically applied to signed networks containing up to 30,000 edges. In the US House context, we find that a three-cluster partition is better than a conventional two-cluster partition, where the otherwise hidden third coalition is composed of highly effective legislators who are ideologically aligned with the majority party. |
format |
article |
author |
Samin Aref Zachary P. Neal |
author_facet |
Samin Aref Zachary P. Neal |
author_sort |
Samin Aref |
title |
Identifying hidden coalitions in the US House of Representatives by optimally partitioning signed networks based on generalized balance |
title_short |
Identifying hidden coalitions in the US House of Representatives by optimally partitioning signed networks based on generalized balance |
title_full |
Identifying hidden coalitions in the US House of Representatives by optimally partitioning signed networks based on generalized balance |
title_fullStr |
Identifying hidden coalitions in the US House of Representatives by optimally partitioning signed networks based on generalized balance |
title_full_unstemmed |
Identifying hidden coalitions in the US House of Representatives by optimally partitioning signed networks based on generalized balance |
title_sort |
identifying hidden coalitions in the us house of representatives by optimally partitioning signed networks based on generalized balance |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/34a0bce2163942f3b3faba2aff7cd3db |
work_keys_str_mv |
AT saminaref identifyinghiddencoalitionsintheushouseofrepresentativesbyoptimallypartitioningsignednetworksbasedongeneralizedbalance AT zacharypneal identifyinghiddencoalitionsintheushouseofrepresentativesbyoptimallypartitioningsignednetworksbasedongeneralizedbalance |
_version_ |
1718377789950787584 |