Listeriomics: an Interactive Web Platform for Systems Biology of <italic toggle="yes">Listeria</italic>

ABSTRACT As for many model organisms, the amount of Listeria omics data produced has recently increased exponentially. There are now >80 published complete Listeria genomes, around 350 different transcriptomic data sets, and 25 proteomic data sets available. The analysis of these data sets throug...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Christophe Bécavin, Mikael Koutero, Nicolas Tchitchek, Franck Cerutti, Pierre Lechat, Nicolas Maillet, Claire Hoede, Hélène Chiapello, Christine Gaspin, Pascale Cossart
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2017
Materias:
Acceso en línea:https://doaj.org/article/34bcd316cf9142148bec16d4f7545e1a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:34bcd316cf9142148bec16d4f7545e1a
record_format dspace
spelling oai:doaj.org-article:34bcd316cf9142148bec16d4f7545e1a2021-12-02T19:45:29ZListeriomics: an Interactive Web Platform for Systems Biology of <italic toggle="yes">Listeria</italic>10.1128/mSystems.00186-162379-5077https://doaj.org/article/34bcd316cf9142148bec16d4f7545e1a2017-04-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSystems.00186-16https://doaj.org/toc/2379-5077ABSTRACT As for many model organisms, the amount of Listeria omics data produced has recently increased exponentially. There are now >80 published complete Listeria genomes, around 350 different transcriptomic data sets, and 25 proteomic data sets available. The analysis of these data sets through a systems biology approach and the generation of tools for biologists to browse these various data are a challenge for bioinformaticians. We have developed a web-based platform, named Listeriomics, that integrates different tools for omics data analyses, i.e., (i) an interactive genome viewer to display gene expression arrays, tiling arrays, and sequencing data sets along with proteomics and genomics data sets; (ii) an expression and protein atlas that connects every gene, small RNA, antisense RNA, or protein with the most relevant omics data; (iii) a specific tool for exploring protein conservation through the Listeria phylogenomic tree; and (iv) a coexpression network tool for the discovery of potential new regulations. Our platform integrates all the complete Listeria species genomes, transcriptomes, and proteomes published to date. This website allows navigation among all these data sets with enriched metadata in a user-friendly format and can be used as a central database for systems biology analysis. IMPORTANCE In the last decades, Listeria has become a key model organism for the study of host-pathogen interactions, noncoding RNA regulation, and bacterial adaptation to stress. To study these mechanisms, several genomics, transcriptomics, and proteomics data sets have been produced. We have developed Listeriomics, an interactive web platform to browse and correlate these heterogeneous sources of information. Our website will allow listeriologists and microbiologists to decipher key regulation mechanism by using a systems biology approach.Christophe BécavinMikael KouteroNicolas TchitchekFranck CeruttiPierre LechatNicolas MailletClaire HoedeHélène ChiapelloChristine GaspinPascale CossartAmerican Society for MicrobiologyarticleListeriatranscriptomicsdatabasegenomicsproteomicssystems biologyMicrobiologyQR1-502ENmSystems, Vol 2, Iss 2 (2017)
institution DOAJ
collection DOAJ
language EN
topic Listeria
transcriptomics
database
genomics
proteomics
systems biology
Microbiology
QR1-502
spellingShingle Listeria
transcriptomics
database
genomics
proteomics
systems biology
Microbiology
QR1-502
Christophe Bécavin
Mikael Koutero
Nicolas Tchitchek
Franck Cerutti
Pierre Lechat
Nicolas Maillet
Claire Hoede
Hélène Chiapello
Christine Gaspin
Pascale Cossart
Listeriomics: an Interactive Web Platform for Systems Biology of <italic toggle="yes">Listeria</italic>
description ABSTRACT As for many model organisms, the amount of Listeria omics data produced has recently increased exponentially. There are now >80 published complete Listeria genomes, around 350 different transcriptomic data sets, and 25 proteomic data sets available. The analysis of these data sets through a systems biology approach and the generation of tools for biologists to browse these various data are a challenge for bioinformaticians. We have developed a web-based platform, named Listeriomics, that integrates different tools for omics data analyses, i.e., (i) an interactive genome viewer to display gene expression arrays, tiling arrays, and sequencing data sets along with proteomics and genomics data sets; (ii) an expression and protein atlas that connects every gene, small RNA, antisense RNA, or protein with the most relevant omics data; (iii) a specific tool for exploring protein conservation through the Listeria phylogenomic tree; and (iv) a coexpression network tool for the discovery of potential new regulations. Our platform integrates all the complete Listeria species genomes, transcriptomes, and proteomes published to date. This website allows navigation among all these data sets with enriched metadata in a user-friendly format and can be used as a central database for systems biology analysis. IMPORTANCE In the last decades, Listeria has become a key model organism for the study of host-pathogen interactions, noncoding RNA regulation, and bacterial adaptation to stress. To study these mechanisms, several genomics, transcriptomics, and proteomics data sets have been produced. We have developed Listeriomics, an interactive web platform to browse and correlate these heterogeneous sources of information. Our website will allow listeriologists and microbiologists to decipher key regulation mechanism by using a systems biology approach.
format article
author Christophe Bécavin
Mikael Koutero
Nicolas Tchitchek
Franck Cerutti
Pierre Lechat
Nicolas Maillet
Claire Hoede
Hélène Chiapello
Christine Gaspin
Pascale Cossart
author_facet Christophe Bécavin
Mikael Koutero
Nicolas Tchitchek
Franck Cerutti
Pierre Lechat
Nicolas Maillet
Claire Hoede
Hélène Chiapello
Christine Gaspin
Pascale Cossart
author_sort Christophe Bécavin
title Listeriomics: an Interactive Web Platform for Systems Biology of <italic toggle="yes">Listeria</italic>
title_short Listeriomics: an Interactive Web Platform for Systems Biology of <italic toggle="yes">Listeria</italic>
title_full Listeriomics: an Interactive Web Platform for Systems Biology of <italic toggle="yes">Listeria</italic>
title_fullStr Listeriomics: an Interactive Web Platform for Systems Biology of <italic toggle="yes">Listeria</italic>
title_full_unstemmed Listeriomics: an Interactive Web Platform for Systems Biology of <italic toggle="yes">Listeria</italic>
title_sort listeriomics: an interactive web platform for systems biology of <italic toggle="yes">listeria</italic>
publisher American Society for Microbiology
publishDate 2017
url https://doaj.org/article/34bcd316cf9142148bec16d4f7545e1a
work_keys_str_mv AT christophebecavin listeriomicsaninteractivewebplatformforsystemsbiologyofitalictoggleyeslisteriaitalic
AT mikaelkoutero listeriomicsaninteractivewebplatformforsystemsbiologyofitalictoggleyeslisteriaitalic
AT nicolastchitchek listeriomicsaninteractivewebplatformforsystemsbiologyofitalictoggleyeslisteriaitalic
AT franckcerutti listeriomicsaninteractivewebplatformforsystemsbiologyofitalictoggleyeslisteriaitalic
AT pierrelechat listeriomicsaninteractivewebplatformforsystemsbiologyofitalictoggleyeslisteriaitalic
AT nicolasmaillet listeriomicsaninteractivewebplatformforsystemsbiologyofitalictoggleyeslisteriaitalic
AT clairehoede listeriomicsaninteractivewebplatformforsystemsbiologyofitalictoggleyeslisteriaitalic
AT helenechiapello listeriomicsaninteractivewebplatformforsystemsbiologyofitalictoggleyeslisteriaitalic
AT christinegaspin listeriomicsaninteractivewebplatformforsystemsbiologyofitalictoggleyeslisteriaitalic
AT pascalecossart listeriomicsaninteractivewebplatformforsystemsbiologyofitalictoggleyeslisteriaitalic
_version_ 1718376017419042816