Quantum Fourier transform for nanoscale quantum sensing

Abstract The quantum Fourier transformation (QFT) is a key building block for a whole wealth of quantum algorithms. Despite its proven efficiency, only a few proof-of-principle demonstrations have been reported. Here we utilize QFT to enhance the performance of a quantum sensor. We implement the QFT...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Vadim Vorobyov, Sebastian Zaiser, Nikolas Abt, Jonas Meinel, Durga Dasari, Philipp Neumann, Jörg Wrachtrup
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/34be9d64cfe540fe931175307bdb2cc8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:34be9d64cfe540fe931175307bdb2cc8
record_format dspace
spelling oai:doaj.org-article:34be9d64cfe540fe931175307bdb2cc82021-12-02T19:06:44ZQuantum Fourier transform for nanoscale quantum sensing10.1038/s41534-021-00463-62056-6387https://doaj.org/article/34be9d64cfe540fe931175307bdb2cc82021-08-01T00:00:00Zhttps://doi.org/10.1038/s41534-021-00463-6https://doaj.org/toc/2056-6387Abstract The quantum Fourier transformation (QFT) is a key building block for a whole wealth of quantum algorithms. Despite its proven efficiency, only a few proof-of-principle demonstrations have been reported. Here we utilize QFT to enhance the performance of a quantum sensor. We implement the QFT algorithm in a hybrid quantum register consisting of a nitrogen-vacancy (NV) center electron spin and three nuclear spins. The QFT runs on the nuclear spins and serves to process the sensor—i.e., the NV electron spin signal. Specifically, we show the application of QFT for correlation spectroscopy, where the long correlation time benefits the use of the QFT in gaining maximum precision and dynamic range at the same time. We further point out the ability for demultiplexing the nuclear magnetic resonance (NMR) signals using QFT and demonstrate precision scaling with the number of used qubits. Our results mark the application of a complex quantum algorithm in sensing which is of particular interest for high dynamic range quantum sensing and nanoscale NMR spectroscopy experiments.Vadim VorobyovSebastian ZaiserNikolas AbtJonas MeinelDurga DasariPhilipp NeumannJörg WrachtrupNature PortfolioarticlePhysicsQC1-999Electronic computers. Computer scienceQA75.5-76.95ENnpj Quantum Information, Vol 7, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
Electronic computers. Computer science
QA75.5-76.95
spellingShingle Physics
QC1-999
Electronic computers. Computer science
QA75.5-76.95
Vadim Vorobyov
Sebastian Zaiser
Nikolas Abt
Jonas Meinel
Durga Dasari
Philipp Neumann
Jörg Wrachtrup
Quantum Fourier transform for nanoscale quantum sensing
description Abstract The quantum Fourier transformation (QFT) is a key building block for a whole wealth of quantum algorithms. Despite its proven efficiency, only a few proof-of-principle demonstrations have been reported. Here we utilize QFT to enhance the performance of a quantum sensor. We implement the QFT algorithm in a hybrid quantum register consisting of a nitrogen-vacancy (NV) center electron spin and three nuclear spins. The QFT runs on the nuclear spins and serves to process the sensor—i.e., the NV electron spin signal. Specifically, we show the application of QFT for correlation spectroscopy, where the long correlation time benefits the use of the QFT in gaining maximum precision and dynamic range at the same time. We further point out the ability for demultiplexing the nuclear magnetic resonance (NMR) signals using QFT and demonstrate precision scaling with the number of used qubits. Our results mark the application of a complex quantum algorithm in sensing which is of particular interest for high dynamic range quantum sensing and nanoscale NMR spectroscopy experiments.
format article
author Vadim Vorobyov
Sebastian Zaiser
Nikolas Abt
Jonas Meinel
Durga Dasari
Philipp Neumann
Jörg Wrachtrup
author_facet Vadim Vorobyov
Sebastian Zaiser
Nikolas Abt
Jonas Meinel
Durga Dasari
Philipp Neumann
Jörg Wrachtrup
author_sort Vadim Vorobyov
title Quantum Fourier transform for nanoscale quantum sensing
title_short Quantum Fourier transform for nanoscale quantum sensing
title_full Quantum Fourier transform for nanoscale quantum sensing
title_fullStr Quantum Fourier transform for nanoscale quantum sensing
title_full_unstemmed Quantum Fourier transform for nanoscale quantum sensing
title_sort quantum fourier transform for nanoscale quantum sensing
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/34be9d64cfe540fe931175307bdb2cc8
work_keys_str_mv AT vadimvorobyov quantumfouriertransformfornanoscalequantumsensing
AT sebastianzaiser quantumfouriertransformfornanoscalequantumsensing
AT nikolasabt quantumfouriertransformfornanoscalequantumsensing
AT jonasmeinel quantumfouriertransformfornanoscalequantumsensing
AT durgadasari quantumfouriertransformfornanoscalequantumsensing
AT philippneumann quantumfouriertransformfornanoscalequantumsensing
AT jorgwrachtrup quantumfouriertransformfornanoscalequantumsensing
_version_ 1718377140783677440