Quantum Fourier transform for nanoscale quantum sensing
Abstract The quantum Fourier transformation (QFT) is a key building block for a whole wealth of quantum algorithms. Despite its proven efficiency, only a few proof-of-principle demonstrations have been reported. Here we utilize QFT to enhance the performance of a quantum sensor. We implement the QFT...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/34be9d64cfe540fe931175307bdb2cc8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:34be9d64cfe540fe931175307bdb2cc8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:34be9d64cfe540fe931175307bdb2cc82021-12-02T19:06:44ZQuantum Fourier transform for nanoscale quantum sensing10.1038/s41534-021-00463-62056-6387https://doaj.org/article/34be9d64cfe540fe931175307bdb2cc82021-08-01T00:00:00Zhttps://doi.org/10.1038/s41534-021-00463-6https://doaj.org/toc/2056-6387Abstract The quantum Fourier transformation (QFT) is a key building block for a whole wealth of quantum algorithms. Despite its proven efficiency, only a few proof-of-principle demonstrations have been reported. Here we utilize QFT to enhance the performance of a quantum sensor. We implement the QFT algorithm in a hybrid quantum register consisting of a nitrogen-vacancy (NV) center electron spin and three nuclear spins. The QFT runs on the nuclear spins and serves to process the sensor—i.e., the NV electron spin signal. Specifically, we show the application of QFT for correlation spectroscopy, where the long correlation time benefits the use of the QFT in gaining maximum precision and dynamic range at the same time. We further point out the ability for demultiplexing the nuclear magnetic resonance (NMR) signals using QFT and demonstrate precision scaling with the number of used qubits. Our results mark the application of a complex quantum algorithm in sensing which is of particular interest for high dynamic range quantum sensing and nanoscale NMR spectroscopy experiments.Vadim VorobyovSebastian ZaiserNikolas AbtJonas MeinelDurga DasariPhilipp NeumannJörg WrachtrupNature PortfolioarticlePhysicsQC1-999Electronic computers. Computer scienceQA75.5-76.95ENnpj Quantum Information, Vol 7, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Physics QC1-999 Electronic computers. Computer science QA75.5-76.95 |
spellingShingle |
Physics QC1-999 Electronic computers. Computer science QA75.5-76.95 Vadim Vorobyov Sebastian Zaiser Nikolas Abt Jonas Meinel Durga Dasari Philipp Neumann Jörg Wrachtrup Quantum Fourier transform for nanoscale quantum sensing |
description |
Abstract The quantum Fourier transformation (QFT) is a key building block for a whole wealth of quantum algorithms. Despite its proven efficiency, only a few proof-of-principle demonstrations have been reported. Here we utilize QFT to enhance the performance of a quantum sensor. We implement the QFT algorithm in a hybrid quantum register consisting of a nitrogen-vacancy (NV) center electron spin and three nuclear spins. The QFT runs on the nuclear spins and serves to process the sensor—i.e., the NV electron spin signal. Specifically, we show the application of QFT for correlation spectroscopy, where the long correlation time benefits the use of the QFT in gaining maximum precision and dynamic range at the same time. We further point out the ability for demultiplexing the nuclear magnetic resonance (NMR) signals using QFT and demonstrate precision scaling with the number of used qubits. Our results mark the application of a complex quantum algorithm in sensing which is of particular interest for high dynamic range quantum sensing and nanoscale NMR spectroscopy experiments. |
format |
article |
author |
Vadim Vorobyov Sebastian Zaiser Nikolas Abt Jonas Meinel Durga Dasari Philipp Neumann Jörg Wrachtrup |
author_facet |
Vadim Vorobyov Sebastian Zaiser Nikolas Abt Jonas Meinel Durga Dasari Philipp Neumann Jörg Wrachtrup |
author_sort |
Vadim Vorobyov |
title |
Quantum Fourier transform for nanoscale quantum sensing |
title_short |
Quantum Fourier transform for nanoscale quantum sensing |
title_full |
Quantum Fourier transform for nanoscale quantum sensing |
title_fullStr |
Quantum Fourier transform for nanoscale quantum sensing |
title_full_unstemmed |
Quantum Fourier transform for nanoscale quantum sensing |
title_sort |
quantum fourier transform for nanoscale quantum sensing |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/34be9d64cfe540fe931175307bdb2cc8 |
work_keys_str_mv |
AT vadimvorobyov quantumfouriertransformfornanoscalequantumsensing AT sebastianzaiser quantumfouriertransformfornanoscalequantumsensing AT nikolasabt quantumfouriertransformfornanoscalequantumsensing AT jonasmeinel quantumfouriertransformfornanoscalequantumsensing AT durgadasari quantumfouriertransformfornanoscalequantumsensing AT philippneumann quantumfouriertransformfornanoscalequantumsensing AT jorgwrachtrup quantumfouriertransformfornanoscalequantumsensing |
_version_ |
1718377140783677440 |