Determining soil particle-size distribution from infrared spectra using machine learning predictions: Methodology and modeling.
Accuracy of infrared (IR) models to measure soil particle-size distribution (PSD) depends on soil preparation, methodology (sedimentation, laser), settling times and relevant soil features. Compositional soil data may require log ratio (ilr) transformation to avoid numerical biases. Machine learning...
Guardado en:
Autores principales: | Elizabeth Jeanne Parent, Serge-Étienne Parent, Léon Etienne Parent |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/34c6b18c52e64759ac4d8aa980964870 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Current and next-year cranberry yields predicted from local features and carryover effects.
por: Léon Etienne Parent, et al.
Publicado: (2021) -
Restriction Enzyme Digestion Exercise – An In-class Activity
por: Michelle Parent
Publicado: (2010) -
Machine learning applied to near-infrared spectra for clinical pleural effusion classification
por: Zhongjian Chen, et al.
Publicado: (2021) -
Machine learning to determine optimal conditions for controlling the size of elastin-based particles
por: Jared S. Cobb, et al.
Publicado: (2021) -
El hombre descartes en sus meditaciones
por: Parent Jacquemin, Juan María
Publicado: (2005)