A pH-sensitive multifunctional gene carrier assembled via layer-by-layer technique for efficient gene delivery

Peng Li, Donghua Liu, Lei Miao, Chunxi Liu, Xiaoli Sun, Yongjun Liu, Na ZhangSchool of Pharmaceutical Science, Shandong University, Jinan, Shandong, People’s Republic of ChinaBackground: The success of gene therapy asks for the development of multifunctional vectors that could overcome...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Li P, Liu DH, Miao L, Liu CX, Sun XL, Liu YJ, Zhang N
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2012
Materias:
Acceso en línea:https://doaj.org/article/34c95ebaafa74950afdaf49b11118e42
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Peng Li, Donghua Liu, Lei Miao, Chunxi Liu, Xiaoli Sun, Yongjun Liu, Na ZhangSchool of Pharmaceutical Science, Shandong University, Jinan, Shandong, People’s Republic of ChinaBackground: The success of gene therapy asks for the development of multifunctional vectors that could overcome various gene delivery barriers, such as the cell membrane, endosomal membrane, and nuclear membrane. Layer-by-layer technique is an efficient method with easy operation which can be used for the assembly of multifunctional gene carriers. This work describes a pH-sensitive multifunctional gene vector that offered long circulation property but avoided the inhibition of tumor cellular uptake of gene carriers associated with the use of polyethylene glycol.Methods: Deoxyribonucleic acid (DNA) was firstly condensed with protamine into a cationic core which was used as assembly template. Then, additional layers of anionic DNA, cationic liposomes, and o-carboxymethyl-chitosan (CMCS) were alternately adsorbed onto the template via layer-by-layer technique and finally the multifunctional vector called CMCS-cationic liposome-coated DNA/protamine/DNA complexes (CLDPD) was constructed. For in vitro test, the cytotoxicity and transfection investigation was carried out on HepG2 cell line. For in vivo evaluation, CMCS-CLDPD was intratumorally injected into tumor-bearing mice and the tumor cells were isolated for fluorescence determination of transfection efficiency.Results: CMCS-CLDPD had ellipsoidal shapes and showed “core-shell” structure which showed stabilization property in serum and effective protection of DNA from nuclease degradation. In vitro and in vivo transfection results demonstrated that CMCS-CLDPD had pH-sensitivity and the outermost layer of CMCS fell off in the tumor tissue, which could not only protect CMCS-CLDPD from serum interaction but also enhance gene transfection efficiency.Conclusion: These results demonstrated that multifunctional CMCS-CLDPD had pH-sensitivity, which may provide a new approach for the antitumor gene delivery.Keywords: layer-by-layer, multifunctional nanovector, pH-sensitivity, gene delivery