Elucidating the signal responses of multi-parametric surface plasmon resonance living cell sensing: a comparison between optical modeling and drug-MDCKII cell interaction measurements.

In vitro cell-based assays are widely used during the drug discovery and development process to test the biological activity of new drugs. Most of the commonly used cell-based assays, however, lack the ability to measure in real-time or under dynamic conditions (e.g. constant flow). In this study a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tapani Viitala, Niko Granqvist, Susanna Hallila, Manuela Raviña, Marjo Yliperttula
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
R
Q
Acceso en línea:https://doaj.org/article/34c9b4b500b44b23962f1e37d7c3de80
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:34c9b4b500b44b23962f1e37d7c3de80
record_format dspace
spelling oai:doaj.org-article:34c9b4b500b44b23962f1e37d7c3de802021-11-18T08:58:01ZElucidating the signal responses of multi-parametric surface plasmon resonance living cell sensing: a comparison between optical modeling and drug-MDCKII cell interaction measurements.1932-620310.1371/journal.pone.0072192https://doaj.org/article/34c9b4b500b44b23962f1e37d7c3de802013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24015218/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203In vitro cell-based assays are widely used during the drug discovery and development process to test the biological activity of new drugs. Most of the commonly used cell-based assays, however, lack the ability to measure in real-time or under dynamic conditions (e.g. constant flow). In this study a multi-parameter surface plasmon resonance approach in combination with living cell sensing has been utilized for monitoring drug-cell interactions in real-time, under constant flow and without labels. The multi-parameter surface plasmon resonance approach, i.e. surface plasmon resonance angle versus intensity plots, provided fully specific signal patterns for various cell behaviors when stimulating cells with drugs that use para- and transcellular absorption routes. Simulated full surface plasmon resonance angular spectra of cell monolayers were compared with actual surface plasmon resonance measurements performed with MDCKII cell monolayers in order to better understand the origin of the surface plasmon resonance signal responses during drug stimulation of cells. The comparison of the simulated and measured surface plasmon resonance responses allowed to better understand and provide plausible explanations for the type of cellular changes, e.g. morphological or mass redistribution in cells, that were induced in the MDCKII cell monolayers during drug stimulation, and consequently to differentiate between the type and modes of drug actions. The multi-parameter surface plasmon resonance approach presented in this study lays the foundation for developing new types of cell-based tools for life science research, which should contribute to an improved mechanistic understanding of the type and contribution of different drug transport routes on drug absorption.Tapani ViitalaNiko GranqvistSusanna HallilaManuela RaviñaMarjo YliperttulaPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 8, Iss 8, p e72192 (2013)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Tapani Viitala
Niko Granqvist
Susanna Hallila
Manuela Raviña
Marjo Yliperttula
Elucidating the signal responses of multi-parametric surface plasmon resonance living cell sensing: a comparison between optical modeling and drug-MDCKII cell interaction measurements.
description In vitro cell-based assays are widely used during the drug discovery and development process to test the biological activity of new drugs. Most of the commonly used cell-based assays, however, lack the ability to measure in real-time or under dynamic conditions (e.g. constant flow). In this study a multi-parameter surface plasmon resonance approach in combination with living cell sensing has been utilized for monitoring drug-cell interactions in real-time, under constant flow and without labels. The multi-parameter surface plasmon resonance approach, i.e. surface plasmon resonance angle versus intensity plots, provided fully specific signal patterns for various cell behaviors when stimulating cells with drugs that use para- and transcellular absorption routes. Simulated full surface plasmon resonance angular spectra of cell monolayers were compared with actual surface plasmon resonance measurements performed with MDCKII cell monolayers in order to better understand the origin of the surface plasmon resonance signal responses during drug stimulation of cells. The comparison of the simulated and measured surface plasmon resonance responses allowed to better understand and provide plausible explanations for the type of cellular changes, e.g. morphological or mass redistribution in cells, that were induced in the MDCKII cell monolayers during drug stimulation, and consequently to differentiate between the type and modes of drug actions. The multi-parameter surface plasmon resonance approach presented in this study lays the foundation for developing new types of cell-based tools for life science research, which should contribute to an improved mechanistic understanding of the type and contribution of different drug transport routes on drug absorption.
format article
author Tapani Viitala
Niko Granqvist
Susanna Hallila
Manuela Raviña
Marjo Yliperttula
author_facet Tapani Viitala
Niko Granqvist
Susanna Hallila
Manuela Raviña
Marjo Yliperttula
author_sort Tapani Viitala
title Elucidating the signal responses of multi-parametric surface plasmon resonance living cell sensing: a comparison between optical modeling and drug-MDCKII cell interaction measurements.
title_short Elucidating the signal responses of multi-parametric surface plasmon resonance living cell sensing: a comparison between optical modeling and drug-MDCKII cell interaction measurements.
title_full Elucidating the signal responses of multi-parametric surface plasmon resonance living cell sensing: a comparison between optical modeling and drug-MDCKII cell interaction measurements.
title_fullStr Elucidating the signal responses of multi-parametric surface plasmon resonance living cell sensing: a comparison between optical modeling and drug-MDCKII cell interaction measurements.
title_full_unstemmed Elucidating the signal responses of multi-parametric surface plasmon resonance living cell sensing: a comparison between optical modeling and drug-MDCKII cell interaction measurements.
title_sort elucidating the signal responses of multi-parametric surface plasmon resonance living cell sensing: a comparison between optical modeling and drug-mdckii cell interaction measurements.
publisher Public Library of Science (PLoS)
publishDate 2013
url https://doaj.org/article/34c9b4b500b44b23962f1e37d7c3de80
work_keys_str_mv AT tapaniviitala elucidatingthesignalresponsesofmultiparametricsurfaceplasmonresonancelivingcellsensingacomparisonbetweenopticalmodelinganddrugmdckiicellinteractionmeasurements
AT nikogranqvist elucidatingthesignalresponsesofmultiparametricsurfaceplasmonresonancelivingcellsensingacomparisonbetweenopticalmodelinganddrugmdckiicellinteractionmeasurements
AT susannahallila elucidatingthesignalresponsesofmultiparametricsurfaceplasmonresonancelivingcellsensingacomparisonbetweenopticalmodelinganddrugmdckiicellinteractionmeasurements
AT manuelaravina elucidatingthesignalresponsesofmultiparametricsurfaceplasmonresonancelivingcellsensingacomparisonbetweenopticalmodelinganddrugmdckiicellinteractionmeasurements
AT marjoyliperttula elucidatingthesignalresponsesofmultiparametricsurfaceplasmonresonancelivingcellsensingacomparisonbetweenopticalmodelinganddrugmdckiicellinteractionmeasurements
_version_ 1718421073455742976