Optimal least square vector autoregressive moving average for battery state of charge estimation and forecasting
The error in state of charge estimation using the combined models is usually attributable to the statistical model. In this study, a least square algorithm is utilized to optimize and increase the state of charge estimation accuracy. Specifically, the vector autoregressive moving average statistical...
Guardado en:
Autores principales: | Angela Caliwag, Wansu Lim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/34d2210a5f6a4612bdb164dc328b7514 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A HYBRID LEAST SQUARES SUPPORT VECTOR MACHINE WITH BAT AND CUCKOO SEARCH ALGORITHMS FOR TIME SERIES FORECASTING
por: Athraa Jasim Mohammed, et al.
Publicado: (2020) -
Peramalan Inflasi Indonesia Dengan Seasonal Auto Regressive Integrated Moving Average
por: Gagah Lanang Ramadhan, et al.
Publicado: (2021) -
POTENTIAL, ELECTRIC FIELD AND SURFACE CHARGES CLOSE TO THE BATTERY FOR A RESISTIVE CYLINDRICAL SHELL CARRYING A STEADY LONGITUDINAL CURRENT
por: Hernandes,J. A., et al.
Publicado: (2004) -
Optimized Charge Controller Schedule in Hybrid Solar-Battery Farms for Peak Load Reduction
por: Gergo Barta, et al.
Publicado: (2021) -
Forecasting of Milk Production in Northern Thailand Using Seasonal Autoregressive Integrated Moving Average, Error Trend Seasonality, and Hybrid Models
por: Veerasak Punyapornwithaya, et al.
Publicado: (2021)