Tensile Performance, Lap-Splice Length and Behavior of Concretes Confined by Prefabricated C-FRCM System
Abstract Results of an experimental study aimed to evaluate tensile performance, lap-splice length of carbon fabric-reinforced cementitious matrix system (C-FRCM), and performance of concretes confined by C-FRCM are presented. Green high-strength mortar was used in this study which actively utilized...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/34de3d5e28f34c53b9fcbd2c765a1619 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:34de3d5e28f34c53b9fcbd2c765a1619 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:34de3d5e28f34c53b9fcbd2c765a16192021-11-21T12:32:57ZTensile Performance, Lap-Splice Length and Behavior of Concretes Confined by Prefabricated C-FRCM System10.1186/s40069-021-00481-w1976-04852234-1315https://doaj.org/article/34de3d5e28f34c53b9fcbd2c765a16192021-11-01T00:00:00Zhttps://doi.org/10.1186/s40069-021-00481-whttps://doaj.org/toc/1976-0485https://doaj.org/toc/2234-1315Abstract Results of an experimental study aimed to evaluate tensile performance, lap-splice length of carbon fabric-reinforced cementitious matrix system (C-FRCM), and performance of concretes confined by C-FRCM are presented. Green high-strength mortar was used in this study which actively utilized recycled fine aggregate and fine waste glass powder to partially substitute cementitious binder. Test plans were developed in due consideration of prefabricated C-FRCM for strengthening concrete columns: 14 tensile tests, 12 lap-splice tests, and 6 uniaxial compression tests of plain concrete specimens confined by C-FRCM were performed. Test variable for the tensile test was number of fabric layers (one or two layers). Nominal strength of the C-FRCM with two fabric layers was 11.0 MPa while it was 7.4 MPa with one fabric layer in tension. Full strength of the carbon fabric was developed in all tensile tests while the C-FRCM with two fabric layers (with axial fiber amount = 0.59% by vol.) showed pseudo-ductile behavior. From the lap-splice tests in direct tension, an increased lap-splice length was required for the double fabrics over that for the single fabrics. The required splice length was about 170 mm for the single fabrics and it was about 310 mm for the double fabrics. Plain concrete cylinders and prismatic specimens were laterally confined by C-FRCM and subjected to uniaxial compression. All test results showed strain-softening behavior. Compressive strength increased by 10–41% while ductility also increased by 6–45% indicating applicability of the prefabricated type C-FRCM in the future.Donguk ChoiSorrasak VachirapanyakunMunckhtuvshin OchirbudUndram NaidangjavSangsu HaYoungho KimSpringerOpenarticlecarbon fabrictensile performancelap spliceconfinementprefabricated FRCMgreen high-strength mortarSystems of building construction. Including fireproof construction, concrete constructionTH1000-1725ENInternational Journal of Concrete Structures and Materials, Vol 15, Iss 1, Pp 1-18 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
carbon fabric tensile performance lap splice confinement prefabricated FRCM green high-strength mortar Systems of building construction. Including fireproof construction, concrete construction TH1000-1725 |
spellingShingle |
carbon fabric tensile performance lap splice confinement prefabricated FRCM green high-strength mortar Systems of building construction. Including fireproof construction, concrete construction TH1000-1725 Donguk Choi Sorrasak Vachirapanyakun Munckhtuvshin Ochirbud Undram Naidangjav Sangsu Ha Youngho Kim Tensile Performance, Lap-Splice Length and Behavior of Concretes Confined by Prefabricated C-FRCM System |
description |
Abstract Results of an experimental study aimed to evaluate tensile performance, lap-splice length of carbon fabric-reinforced cementitious matrix system (C-FRCM), and performance of concretes confined by C-FRCM are presented. Green high-strength mortar was used in this study which actively utilized recycled fine aggregate and fine waste glass powder to partially substitute cementitious binder. Test plans were developed in due consideration of prefabricated C-FRCM for strengthening concrete columns: 14 tensile tests, 12 lap-splice tests, and 6 uniaxial compression tests of plain concrete specimens confined by C-FRCM were performed. Test variable for the tensile test was number of fabric layers (one or two layers). Nominal strength of the C-FRCM with two fabric layers was 11.0 MPa while it was 7.4 MPa with one fabric layer in tension. Full strength of the carbon fabric was developed in all tensile tests while the C-FRCM with two fabric layers (with axial fiber amount = 0.59% by vol.) showed pseudo-ductile behavior. From the lap-splice tests in direct tension, an increased lap-splice length was required for the double fabrics over that for the single fabrics. The required splice length was about 170 mm for the single fabrics and it was about 310 mm for the double fabrics. Plain concrete cylinders and prismatic specimens were laterally confined by C-FRCM and subjected to uniaxial compression. All test results showed strain-softening behavior. Compressive strength increased by 10–41% while ductility also increased by 6–45% indicating applicability of the prefabricated type C-FRCM in the future. |
format |
article |
author |
Donguk Choi Sorrasak Vachirapanyakun Munckhtuvshin Ochirbud Undram Naidangjav Sangsu Ha Youngho Kim |
author_facet |
Donguk Choi Sorrasak Vachirapanyakun Munckhtuvshin Ochirbud Undram Naidangjav Sangsu Ha Youngho Kim |
author_sort |
Donguk Choi |
title |
Tensile Performance, Lap-Splice Length and Behavior of Concretes Confined by Prefabricated C-FRCM System |
title_short |
Tensile Performance, Lap-Splice Length and Behavior of Concretes Confined by Prefabricated C-FRCM System |
title_full |
Tensile Performance, Lap-Splice Length and Behavior of Concretes Confined by Prefabricated C-FRCM System |
title_fullStr |
Tensile Performance, Lap-Splice Length and Behavior of Concretes Confined by Prefabricated C-FRCM System |
title_full_unstemmed |
Tensile Performance, Lap-Splice Length and Behavior of Concretes Confined by Prefabricated C-FRCM System |
title_sort |
tensile performance, lap-splice length and behavior of concretes confined by prefabricated c-frcm system |
publisher |
SpringerOpen |
publishDate |
2021 |
url |
https://doaj.org/article/34de3d5e28f34c53b9fcbd2c765a1619 |
work_keys_str_mv |
AT dongukchoi tensileperformancelapsplicelengthandbehaviorofconcretesconfinedbyprefabricatedcfrcmsystem AT sorrasakvachirapanyakun tensileperformancelapsplicelengthandbehaviorofconcretesconfinedbyprefabricatedcfrcmsystem AT munckhtuvshinochirbud tensileperformancelapsplicelengthandbehaviorofconcretesconfinedbyprefabricatedcfrcmsystem AT undramnaidangjav tensileperformancelapsplicelengthandbehaviorofconcretesconfinedbyprefabricatedcfrcmsystem AT sangsuha tensileperformancelapsplicelengthandbehaviorofconcretesconfinedbyprefabricatedcfrcmsystem AT younghokim tensileperformancelapsplicelengthandbehaviorofconcretesconfinedbyprefabricatedcfrcmsystem |
_version_ |
1718418935177543680 |