Effects of dexmedetomidine on renal microcirculation in ischemia/reperfusion-induced acute kidney injury in rats

Abstract Microcirculatory dysfunction plays a crucial role in renal ischemia/reperfusion (IR)-induced injury. Dexmedetomidine was reported to ameliorate IR-induced acute kidney injury. This study investigated the effects of dexmedetomidine on renal microcirculation after IR-induced acute kidney inju...

Full description

Saved in:
Bibliographic Details
Main Authors: Szu-Jen Yang, Chia-Ning Fan, Ming-Jiuh Wang, Shou-Zen Fan, Jui-Chang Tsai, Wei-Zen Sun, Wing-Sum Chan, Yu-Chang Yeh, NTUH Center of Microcirculation Medical Research (NCMMR)
Format: article
Language:EN
Published: Nature Portfolio 2021
Subjects:
R
Q
Online Access:https://doaj.org/article/3502e6b27c25449facf02462e92e7a6a
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Microcirculatory dysfunction plays a crucial role in renal ischemia/reperfusion (IR)-induced injury. Dexmedetomidine was reported to ameliorate IR-induced acute kidney injury. This study investigated the effects of dexmedetomidine on renal microcirculation after IR-induced acute kidney injury in rats. In total, 50 rats were randomly allocated to the following five groups (10 in each group): Sham, Control‒IR, Dex (dexmedetomidine) ‒Sham, Dex‒IR, and IR‒Dex group. The microcirculation parameters included total small vessel density, perfused small vessel density (PSVD), proportion of perfused small vessels, microvascular flow index, and tissue oxygen saturation (StO2) were recorded. The repeated measures analysis showed that PSVD on renal surface was higher in the Dex‒IR group than in the Control‒IR group (3.5 mm/mm2, 95% confidence interval [CI] 0.6 to 6.4 mm/mm2, P = 0.01). At 240 min, StO2 on renal surface was lower in the Control‒IR group than in the Sham group (– 7%, 95% CI − 13 to − 1%, P = 0.021), but StO2 did not differ significantly among the Sham, Dex‒IR, and IR‒Dex groups. Our results showed that pretreatment with dexmedetomidine improved renal microcirculation in rats with IR-induced acute kidney injury. However, the adverse effects of low mean arterial pressure and heart rate might offset the protective effect of dexmedetomidine on organ injury.