Locomotion in virtual environments predicts cardiovascular responsiveness to subsequent stressful challenges
People differ in their susceptibility to stressors, but it is difficult to know a priori who has a higher vulnerability. Here, the authors show that machine learning algorithms applied to locomotor data from people’s exploration of virtual reality scenarios predicts heart rate variability to stress....
Guardado en:
Autores principales: | João Rodrigues, Erik Studer, Stephan Streuber, Nathalie Meyer, Carmen Sandi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/35044ec9c1d346319326207e4e375cdf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Model Predictive Control With Environment Adaptation for Legged Locomotion
por: Niraj Rathod, et al.
Publicado: (2021) -
Enhanced Caenorhabditis elegans locomotion in a structured microfluidic environment.
por: Sungsu Park, et al.
Publicado: (2008) -
Detection of Mental Stress through EEG Signal in Virtual Reality Environment
por: Dorota Kamińska, et al.
Publicado: (2021) -
The importance of design in the development of virtual learning environments
por: Francisco José Rodrigues Sousa
Publicado: (2018) -
Locomotive syndrome: clinical perspectives
por: Ikemoto T, et al.
Publicado: (2018)