A decomposition and multi-objective evolutionary optimization model for suspended sediment load prediction in rivers
Suspended sediment load (SSL) estimation is essential for both short- and long-term water resources management. Suspended sediments are taken into account as an important factor of the service life of hydraulic structures such as dams. The aim of this research is to estimat SSL by coupling intrinsic...
Guardado en:
Autores principales: | Nannan Zhao, Alireza Ghaemi, Chengwen Wu, Shahab S. Band, Kwok-Wing Chau, Atef Zaguia, Majdi Mafarja, Amir H. Mosavi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Taylor & Francis Group
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3506676583014db5aef9c27646b382d3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Suspended sediment input from crushed-stone ford construction on the Canadian Shield in Quebec
por: Karelle Gilbert, et al.
Publicado: (2021) -
Surf Zone Turbulence and Suspended Sediment Dynamics—A Review
por: Troels Aagaard, et al.
Publicado: (2021) -
Factors Controlling Contemporary Suspended Sediment Yield in the Caucasus Region
por: Valentin Golosov, et al.
Publicado: (2021) -
Application of Whale Optimization Algorithm Combined with Adaptive Neuro-Fuzzy Inference System for Estimating Suspended Sediment Load
por: Hojjat Emami, et al.
Publicado: (2021) -
The potential of ensemble WT-EEMD-kernel extreme learning machine techniques for prediction suspended sediment concentration in successive points of a river
por: Kiyoumars Roushangar, et al.
Publicado: (2021)