Respiratory sound classification for crackles, wheezes, and rhonchi in the clinical field using deep learning
Abstract Auscultation has been essential part of the physical examination; this is non-invasive, real-time, and very informative. Detection of abnormal respiratory sounds with a stethoscope is important in diagnosing respiratory diseases and providing first aid. However, accurate interpretation of r...
Guardado en:
Autores principales: | Yoonjoo Kim, YunKyong Hyon, Sung Soo Jung, Sunju Lee, Geon Yoo, Chaeuk Chung, Taeyoung Ha |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/350a496dc10741ddb83ca44fafc5d08c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The use of spectrograms improves the classification of wheezes and crackles in an educational setting
por: J. C. Aviles-Solis, et al.
Publicado: (2020) -
Scientific Validation and Clinical Application of Lung Cancer Organoids
por: Dahye Lee, et al.
Publicado: (2021) -
Rhinovirus-associated wheezing in infancy Comparison with respiratory syncytial virus bronchiolitis
por: Zamorano R.,Juanita
Publicado: (2005) -
Abnormal Respiratory Sounds Classification Using Deep CNN Through Artificial Noise Addition
por: Rizwana Zulfiqar, et al.
Publicado: (2021) -
THE CORRELATION OF SYMPTOMS AND OBJECTIVE WHEEZE IN ASTHMATICS
por: Abdul Latif Khattak, et al.
Publicado: (2020)