Personalized Preference Drift Aware Sequential Recommender System
The user preference patterns are highly dynamic and develop over time. To address the drift of user preference patterns, most of the prior works for sequential recommendation categorize the user preference patterns into different patterns, e.g., short-term and long-term preference. However, the numb...
Guardado en:
Autores principales: | Nakarin Sritrakool, Saranya Maneeroj |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3512a8adfa7643689c715f8fcc12f5a4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Hybrid-Preference Neural Model for Basket-Sensitive Item Recommendation
por: Zhiqiang Pan, et al.
Publicado: (2020) -
NeuSub: A Neural Submodular Approach for Citation Recommendation
por: Binh Thanh Kieu, et al.
Publicado: (2021) -
Application of Intelligent Recommendation for Agricultural Information: A Systematic Literature Review
por: Caixia Song, et al.
Publicado: (2021) -
Using Artificial Neural Network for Predicting and Evaluating Situation Awareness of Operator
por: Shengyuan Yan, et al.
Publicado: (2021) -
Selective Untargeted Evasion Attack: An Adversarial Example That Will Not Be Classified as Certain Avoided Classes
por: Hyun Kwon, et al.
Publicado: (2019)