Personalized Preference Drift Aware Sequential Recommender System
The user preference patterns are highly dynamic and develop over time. To address the drift of user preference patterns, most of the prior works for sequential recommendation categorize the user preference patterns into different patterns, e.g., short-term and long-term preference. However, the numb...
Enregistré dans:
| Auteurs principaux: | Nakarin Sritrakool, Saranya Maneeroj |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
IEEE
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/3512a8adfa7643689c715f8fcc12f5a4 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Hybrid-Preference Neural Model for Basket-Sensitive Item Recommendation
par: Zhiqiang Pan, et autres
Publié: (2020) -
NeuSub: A Neural Submodular Approach for Citation Recommendation
par: Binh Thanh Kieu, et autres
Publié: (2021) -
Application of Intelligent Recommendation for Agricultural Information: A Systematic Literature Review
par: Caixia Song, et autres
Publié: (2021) -
Using Artificial Neural Network for Predicting and Evaluating Situation Awareness of Operator
par: Shengyuan Yan, et autres
Publié: (2021) -
Selective Untargeted Evasion Attack: An Adversarial Example That Will Not Be Classified as Certain Avoided Classes
par: Hyun Kwon, et autres
Publié: (2019)