A New Performance Degradation Evaluation Method Integrating PCA, PSR and KELM
In order to better characterize the performance degradation trend of rolling bearings, a new performance degradation evaluation method based on principal component analysis (PCA), phase space reconstruction (PSR) and kernel extreme learning machine (KELM), namely PAPRKM is proposed to evaluate the p...
Enregistré dans:
Auteurs principaux: | Mingyang Lv, Chunguang Zhang, Aibin Guo, Fang Liu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3513e8f4bf5f408db8eb61ce9bb23c4c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Novel Method for Multivariant Pneumonia Classification Based on Hybrid CNN-PCA Based Feature Extraction Using Extreme Learning Machine With CXR Images
par: Md. Nahiduzzaman, et autres
Publié: (2021) -
A Novel Feature Extraction Method for Soft Faults in Nonlinear Analog Circuits Based on LMD-GFD and KPCA
par: Xinmiao Lu*, et autres
Publié: (2021) -
Cultural management as a tourism competitiveness factor. A principal component analysis (PCA) for Colombia
par: Corzo-Arévalo,Daniel, et autres
Publié: (2021) -
Fast discrimination of avocado oil for different extracted methods using headspace-gas chromatography-ion mobility spectroscopy with PCA based on volatile organic compounds
par: Liu Yi-Jun, et autres
Publié: (2021) -
An Enhanced Ensemble Learning-Based Fault Detection and Diagnosis for Grid-Connected PV Systems
par: Khaled Dhibi, et autres
Publié: (2021)