A New Performance Degradation Evaluation Method Integrating PCA, PSR and KELM
In order to better characterize the performance degradation trend of rolling bearings, a new performance degradation evaluation method based on principal component analysis (PCA), phase space reconstruction (PSR) and kernel extreme learning machine (KELM), namely PAPRKM is proposed to evaluate the p...
Guardado en:
Autores principales: | Mingyang Lv, Chunguang Zhang, Aibin Guo, Fang Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3513e8f4bf5f408db8eb61ce9bb23c4c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Novel Method for Multivariant Pneumonia Classification Based on Hybrid CNN-PCA Based Feature Extraction Using Extreme Learning Machine With CXR Images
por: Md. Nahiduzzaman, et al.
Publicado: (2021) -
A Novel Feature Extraction Method for Soft Faults in Nonlinear Analog Circuits Based on LMD-GFD and KPCA
por: Xinmiao Lu*, et al.
Publicado: (2021) -
Cultural management as a tourism competitiveness factor. A principal component analysis (PCA) for Colombia
por: Corzo-Arévalo,Daniel, et al.
Publicado: (2021) -
Fast discrimination of avocado oil for different extracted methods using headspace-gas chromatography-ion mobility spectroscopy with PCA based on volatile organic compounds
por: Liu Yi-Jun, et al.
Publicado: (2021) -
An Enhanced Ensemble Learning-Based Fault Detection and Diagnosis for Grid-Connected PV Systems
por: Khaled Dhibi, et al.
Publicado: (2021)