Molecular chaperones and Parkinson's disease
Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive death of dopaminergic neurons in the substantia nigra and the formation of Lewy bodies (LBs). Mutations in PD-related genes lead to neuronal pathogenesis through various mechanisms, with known examples includin...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3517472f38b549ec822367c153bb767a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3517472f38b549ec822367c153bb767a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3517472f38b549ec822367c153bb767a2021-11-12T04:26:00ZMolecular chaperones and Parkinson's disease1095-953X10.1016/j.nbd.2021.105527https://doaj.org/article/3517472f38b549ec822367c153bb767a2021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S096999612100276Xhttps://doaj.org/toc/1095-953XParkinson's disease (PD) is a neurodegenerative disease characterized by progressive death of dopaminergic neurons in the substantia nigra and the formation of Lewy bodies (LBs). Mutations in PD-related genes lead to neuronal pathogenesis through various mechanisms, with known examples including SNCA/α-synuclein (PAKR1), Parkin (PARK2), PINK1 (PARK6), DJ-1 (PARK7), and LRRK2 (PARK8). Molecular chaperones/co-chaperones are proteins that aid the folding of other proteins into a functionally active conformation. It has been demonstrated that chaperones/co-chaperones interact with PD-related proteins and regulate their function in PD. HSP70, HSP90 and small heat shock proteins can prevent neurodegeneration by regulating α-syn misfolding, oligomerization and aggregation. The function of chaperones is regulated by co-chaperones such as HSP110, HSP40, HOP, CHIP, and BAG family proteins. Parkin, PINK1 and DJ-1 are PD-related proteins which are associated with mitochondrial function. Molecular chaperones regulate mitochondrial function and protein homeostasis by interacting with these PD-related proteins. This review discusses critical molecular chaperones/co-chaperones and PD-related proteins which contribute to the pathogenesis of PD, hoping to provide new molecular targets for therapeutic interventions to thwart the disease progression instead of only bringing symptomatic relief. Moreover, appreciating the critical role of chaperones in PD can also help us screen efficient biomarkers to identify PD at an early stage.Shenglan HuJieqiong TanLixia QinLingling LvWeiqian YanHainan ZhangBeiSha TangChunyu WangElsevierarticleα-Synuclein (α-syn)ParkinPINK1DJ-1LRRK2Molecular chaperoneNeurosciences. Biological psychiatry. NeuropsychiatryRC321-571ENNeurobiology of Disease, Vol 160, Iss , Pp 105527- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
α-Synuclein (α-syn) Parkin PINK1 DJ-1 LRRK2 Molecular chaperone Neurosciences. Biological psychiatry. Neuropsychiatry RC321-571 |
spellingShingle |
α-Synuclein (α-syn) Parkin PINK1 DJ-1 LRRK2 Molecular chaperone Neurosciences. Biological psychiatry. Neuropsychiatry RC321-571 Shenglan Hu Jieqiong Tan Lixia Qin Lingling Lv Weiqian Yan Hainan Zhang BeiSha Tang Chunyu Wang Molecular chaperones and Parkinson's disease |
description |
Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive death of dopaminergic neurons in the substantia nigra and the formation of Lewy bodies (LBs). Mutations in PD-related genes lead to neuronal pathogenesis through various mechanisms, with known examples including SNCA/α-synuclein (PAKR1), Parkin (PARK2), PINK1 (PARK6), DJ-1 (PARK7), and LRRK2 (PARK8). Molecular chaperones/co-chaperones are proteins that aid the folding of other proteins into a functionally active conformation. It has been demonstrated that chaperones/co-chaperones interact with PD-related proteins and regulate their function in PD. HSP70, HSP90 and small heat shock proteins can prevent neurodegeneration by regulating α-syn misfolding, oligomerization and aggregation. The function of chaperones is regulated by co-chaperones such as HSP110, HSP40, HOP, CHIP, and BAG family proteins. Parkin, PINK1 and DJ-1 are PD-related proteins which are associated with mitochondrial function. Molecular chaperones regulate mitochondrial function and protein homeostasis by interacting with these PD-related proteins. This review discusses critical molecular chaperones/co-chaperones and PD-related proteins which contribute to the pathogenesis of PD, hoping to provide new molecular targets for therapeutic interventions to thwart the disease progression instead of only bringing symptomatic relief. Moreover, appreciating the critical role of chaperones in PD can also help us screen efficient biomarkers to identify PD at an early stage. |
format |
article |
author |
Shenglan Hu Jieqiong Tan Lixia Qin Lingling Lv Weiqian Yan Hainan Zhang BeiSha Tang Chunyu Wang |
author_facet |
Shenglan Hu Jieqiong Tan Lixia Qin Lingling Lv Weiqian Yan Hainan Zhang BeiSha Tang Chunyu Wang |
author_sort |
Shenglan Hu |
title |
Molecular chaperones and Parkinson's disease |
title_short |
Molecular chaperones and Parkinson's disease |
title_full |
Molecular chaperones and Parkinson's disease |
title_fullStr |
Molecular chaperones and Parkinson's disease |
title_full_unstemmed |
Molecular chaperones and Parkinson's disease |
title_sort |
molecular chaperones and parkinson's disease |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/3517472f38b549ec822367c153bb767a |
work_keys_str_mv |
AT shenglanhu molecularchaperonesandparkinsonsdisease AT jieqiongtan molecularchaperonesandparkinsonsdisease AT lixiaqin molecularchaperonesandparkinsonsdisease AT linglinglv molecularchaperonesandparkinsonsdisease AT weiqianyan molecularchaperonesandparkinsonsdisease AT hainanzhang molecularchaperonesandparkinsonsdisease AT beishatang molecularchaperonesandparkinsonsdisease AT chunyuwang molecularchaperonesandparkinsonsdisease |
_version_ |
1718431283809353728 |