IceR improves proteome coverage and data completeness in global and single-cell proteomics

Label-free quantitative proteomics by data dependent acquisition offers high protein identification rates but is often limited by missing values. Here, the authors develop a quantification workflow that substantially reduces missing values while maintaining high identification rates and quantificati...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mathias Kalxdorf, Torsten Müller, Oliver Stegle, Jeroen Krijgsveld
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/351845f950f84ca38cb5bf54177b0ef5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Label-free quantitative proteomics by data dependent acquisition offers high protein identification rates but is often limited by missing values. Here, the authors develop a quantification workflow that substantially reduces missing values while maintaining high identification rates and quantification accuracy.