IceR improves proteome coverage and data completeness in global and single-cell proteomics

Label-free quantitative proteomics by data dependent acquisition offers high protein identification rates but is often limited by missing values. Here, the authors develop a quantification workflow that substantially reduces missing values while maintaining high identification rates and quantificati...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mathias Kalxdorf, Torsten Müller, Oliver Stegle, Jeroen Krijgsveld
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/351845f950f84ca38cb5bf54177b0ef5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:351845f950f84ca38cb5bf54177b0ef5
record_format dspace
spelling oai:doaj.org-article:351845f950f84ca38cb5bf54177b0ef52021-12-02T16:43:43ZIceR improves proteome coverage and data completeness in global and single-cell proteomics10.1038/s41467-021-25077-62041-1723https://doaj.org/article/351845f950f84ca38cb5bf54177b0ef52021-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25077-6https://doaj.org/toc/2041-1723Label-free quantitative proteomics by data dependent acquisition offers high protein identification rates but is often limited by missing values. Here, the authors develop a quantification workflow that substantially reduces missing values while maintaining high identification rates and quantification accuracy.Mathias KalxdorfTorsten MüllerOliver StegleJeroen KrijgsveldNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Mathias Kalxdorf
Torsten Müller
Oliver Stegle
Jeroen Krijgsveld
IceR improves proteome coverage and data completeness in global and single-cell proteomics
description Label-free quantitative proteomics by data dependent acquisition offers high protein identification rates but is often limited by missing values. Here, the authors develop a quantification workflow that substantially reduces missing values while maintaining high identification rates and quantification accuracy.
format article
author Mathias Kalxdorf
Torsten Müller
Oliver Stegle
Jeroen Krijgsveld
author_facet Mathias Kalxdorf
Torsten Müller
Oliver Stegle
Jeroen Krijgsveld
author_sort Mathias Kalxdorf
title IceR improves proteome coverage and data completeness in global and single-cell proteomics
title_short IceR improves proteome coverage and data completeness in global and single-cell proteomics
title_full IceR improves proteome coverage and data completeness in global and single-cell proteomics
title_fullStr IceR improves proteome coverage and data completeness in global and single-cell proteomics
title_full_unstemmed IceR improves proteome coverage and data completeness in global and single-cell proteomics
title_sort icer improves proteome coverage and data completeness in global and single-cell proteomics
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/351845f950f84ca38cb5bf54177b0ef5
work_keys_str_mv AT mathiaskalxdorf icerimprovesproteomecoverageanddatacompletenessinglobalandsinglecellproteomics
AT torstenmuller icerimprovesproteomecoverageanddatacompletenessinglobalandsinglecellproteomics
AT oliverstegle icerimprovesproteomecoverageanddatacompletenessinglobalandsinglecellproteomics
AT jeroenkrijgsveld icerimprovesproteomecoverageanddatacompletenessinglobalandsinglecellproteomics
_version_ 1718383506466275328