IceR improves proteome coverage and data completeness in global and single-cell proteomics
Label-free quantitative proteomics by data dependent acquisition offers high protein identification rates but is often limited by missing values. Here, the authors develop a quantification workflow that substantially reduces missing values while maintaining high identification rates and quantificati...
Guardado en:
Autores principales: | Mathias Kalxdorf, Torsten Müller, Oliver Stegle, Jeroen Krijgsveld |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/351845f950f84ca38cb5bf54177b0ef5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
ICER is requisite for Th17 differentiation
por: Nobuya Yoshida, et al.
Publicado: (2016) -
Lost and Found: Re-searching and Re-scoring Proteomics Data Aids Genome Annotation and Improves Proteome Coverage
por: Patrick Willems, et al.
Publicado: (2020) -
Global changes of the RNA-bound proteome during the maternal-to-zygotic transition in Drosophila
por: Vasiliy O. Sysoev, et al.
Publicado: (2016) - Proteomes
-
Complete Coverage Path Planning of an Unmanned Surface Vehicle Based on a Complete Coverage Neural Network Algorithm
por: Peng-Fei Xu, et al.
Publicado: (2021)