Deep learning-based anomaly-onset aware remaining useful life estimation of bearings
Remaining Useful Life (RUL) estimation of rotating machinery based on their degradation data is vital for machine supervisors. Deep learning models are effective and popular methods for forecasting when rotating machinery such as bearings may malfunction and ultimately break down. During healthy fun...
Guardado en:
Autores principales: | Pooja Vinayak Kamat, Rekha Sugandhi, Satish Kumar |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/352093102f5a464598971be0a57f886a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predictive Maintenance: An Autoencoder Anomaly-Based Approach for a 3 DoF Delta Robot
por: Kiavash Fathi, et al.
Publicado: (2021) -
Anomaly Detection for the Centralised Elasticsearch Service at CERN
por: Jennifer R. Andersson, et al.
Publicado: (2021) -
NFAD: fixing anomaly detection using normalizing flows
por: Artem Ryzhikov, et al.
Publicado: (2021) -
A Robust Framework for MADS Based on DL Techniques on the IoT
por: Hussah Talal, et al.
Publicado: (2021) -
Data-Driven Anomaly Detection in High-Voltage Transformer Bushings with LSTM Auto-Encoder
por: Imene Mitiche, et al.
Publicado: (2021)