Machine learning methodology for high throughput personalized neutron dose reconstruction in mixed neutron + photon exposures
Abstract We implemented machine learning in the radiation biodosimetry field to quantitatively reconstruct neutron doses in mixed neutron + photon exposures, which are expected in improvised nuclear device detonations. Such individualized reconstructions are crucial for triage and treatment because...
Guardado en:
Autores principales: | Igor Shuryak, Helen C. Turner, Monica Pujol-Canadell, Jay R. Perrier, Guy Garty, David J. Brenner |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/35230253caf340c5a876ae1e78980dac |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Neutron-mirror neutron mixing and neutron stars
por: Zurab Berezhiani, et al.
Publicado: (2021) -
Evaluating the dependency of neutron spectra and absorbed dose rates on the collimation field size in fast neutron therapy
por: A.M. Shehada, et al.
Publicado: (2021) -
Neutron news
Publicado: (1990) -
Journal of neutron research
Publicado: (1993) -
Hyperons in Neutron Stars
por: Domenico Logoteta
Publicado: (2021)