Discrete spectra for some complex infinite band matrices
Under suitable assumptions the eigenvalues for an unbounded discrete operator \(A\) in \(l_2\), given by an infinite complex band-type matrix, are approximated by the eigenvalues of its orthogonal truncations. Let \[\Lambda (A)=\{\lambda \in {\rm Lim}_{n\to \infty} \lambda _n : \lambda _n \text{ i...
Guardado en:
Autor principal: | Maria Malejki |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AGH Univeristy of Science and Technology Press
2021
|
Materias: | |
Acceso en línea: | https://doi.org/10.7494/OpMath.2021.41.6.861 https://doaj.org/article/352e3db55dc74e42a73b119562036eb7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Editorial Board
Publicado: (2021) -
Nonlocal PT-symmetric integrable equations and related Riemann–Hilbert problems
por: Wen-Xiu Ma
Publicado: (2021) -
Finite element implementation of general triangular mesh for Riesz derivative
por: Daopeng Yin, et al.
Publicado: (2021) -
DIAGONALS AND EIGENVALUES OF SUMS OF HERMITIAN MATRICES: EXTREME CASES
por: MIRANDA,HÉCTOR
Publicado: (2003) -
On the generating matrices of the Ê-Fibonacci numbers
por: Falcon,Sergio
Publicado: (2013)