Evolutionary modification of AGS protein contributes to formation of micromeres in sea urchins

Micromeres in a sea urchin embryo are formed by asymetric cleavage but what molecular mechanisms regulate their formation is unclear. Here, the authors show that sea urchins modify an evolutionarily conserved AGS-dependent mechanism to induce asymmetric cell divisions in the early embryo.

Guardado en:
Detalles Bibliográficos
Autores principales: Jessica Poon, Annaliese Fries, Gary M. Wessel, Mamiko Yajima
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/353c74f2d0584b09ad8431559aa166a5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:353c74f2d0584b09ad8431559aa166a5
record_format dspace
spelling oai:doaj.org-article:353c74f2d0584b09ad8431559aa166a52021-12-02T17:02:12ZEvolutionary modification of AGS protein contributes to formation of micromeres in sea urchins10.1038/s41467-019-11560-82041-1723https://doaj.org/article/353c74f2d0584b09ad8431559aa166a52019-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-11560-8https://doaj.org/toc/2041-1723Micromeres in a sea urchin embryo are formed by asymetric cleavage but what molecular mechanisms regulate their formation is unclear. Here, the authors show that sea urchins modify an evolutionarily conserved AGS-dependent mechanism to induce asymmetric cell divisions in the early embryo.Jessica PoonAnnaliese FriesGary M. WesselMamiko YajimaNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-16 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Jessica Poon
Annaliese Fries
Gary M. Wessel
Mamiko Yajima
Evolutionary modification of AGS protein contributes to formation of micromeres in sea urchins
description Micromeres in a sea urchin embryo are formed by asymetric cleavage but what molecular mechanisms regulate their formation is unclear. Here, the authors show that sea urchins modify an evolutionarily conserved AGS-dependent mechanism to induce asymmetric cell divisions in the early embryo.
format article
author Jessica Poon
Annaliese Fries
Gary M. Wessel
Mamiko Yajima
author_facet Jessica Poon
Annaliese Fries
Gary M. Wessel
Mamiko Yajima
author_sort Jessica Poon
title Evolutionary modification of AGS protein contributes to formation of micromeres in sea urchins
title_short Evolutionary modification of AGS protein contributes to formation of micromeres in sea urchins
title_full Evolutionary modification of AGS protein contributes to formation of micromeres in sea urchins
title_fullStr Evolutionary modification of AGS protein contributes to formation of micromeres in sea urchins
title_full_unstemmed Evolutionary modification of AGS protein contributes to formation of micromeres in sea urchins
title_sort evolutionary modification of ags protein contributes to formation of micromeres in sea urchins
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/353c74f2d0584b09ad8431559aa166a5
work_keys_str_mv AT jessicapoon evolutionarymodificationofagsproteincontributestoformationofmicromeresinseaurchins
AT annaliesefries evolutionarymodificationofagsproteincontributestoformationofmicromeresinseaurchins
AT garymwessel evolutionarymodificationofagsproteincontributestoformationofmicromeresinseaurchins
AT mamikoyajima evolutionarymodificationofagsproteincontributestoformationofmicromeresinseaurchins
_version_ 1718381899516215296