CNS microRNA profiles: a database for cell type enriched microRNA expression across the mouse central nervous system
Abstract microRNAs are short, noncoding RNAs that can regulate hundreds of targets and thus shape the expression landscape of a cell. Similar to mRNA, they often exhibit cell type enriched expression and serve to reinforce cellular identity. In tissue with high cellular complexity, such as the centr...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/354025229cc74c27b4dd2e4797a05681 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:354025229cc74c27b4dd2e4797a05681 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:354025229cc74c27b4dd2e4797a056812021-12-02T16:30:58ZCNS microRNA profiles: a database for cell type enriched microRNA expression across the mouse central nervous system10.1038/s41598-020-61307-52045-2322https://doaj.org/article/354025229cc74c27b4dd2e4797a056812020-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-61307-5https://doaj.org/toc/2045-2322Abstract microRNAs are short, noncoding RNAs that can regulate hundreds of targets and thus shape the expression landscape of a cell. Similar to mRNA, they often exhibit cell type enriched expression and serve to reinforce cellular identity. In tissue with high cellular complexity, such as the central nervous system (CNS), it is difficult to attribute microRNA changes to a particular cell type. To facilitate interpretation of microRNA studies in these tissues, we used previously generated data to develop a publicly accessible and user-friendly database to enable exploration of cell type enriched microRNA expression. We provide illustrations of how this database can be utilized as a reference as well as for hypothesis generation. First, we suggest a putative role for miR-21 in the microglial spinal injury response. Second, we highlight data indicating that differential microRNA expression, specifically miR-326, may in part explain regional differences in inflammatory cells. Finally, we show that miR-383 expression is enriched in cortical glutamatergic neurons, suggesting a unique role in these cells. These examples illustrate the database’s utility in guiding research towards unstudied regulators in the CNS. This novel resource will aid future research into microRNA-based regulatory mechanisms responsible for cellular phenotypes within the CNS.Nathan PomperYating LiuMariah L. HoyeJoseph D. DoughertyTimothy M. MillerNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-8 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Nathan Pomper Yating Liu Mariah L. Hoye Joseph D. Dougherty Timothy M. Miller CNS microRNA profiles: a database for cell type enriched microRNA expression across the mouse central nervous system |
description |
Abstract microRNAs are short, noncoding RNAs that can regulate hundreds of targets and thus shape the expression landscape of a cell. Similar to mRNA, they often exhibit cell type enriched expression and serve to reinforce cellular identity. In tissue with high cellular complexity, such as the central nervous system (CNS), it is difficult to attribute microRNA changes to a particular cell type. To facilitate interpretation of microRNA studies in these tissues, we used previously generated data to develop a publicly accessible and user-friendly database to enable exploration of cell type enriched microRNA expression. We provide illustrations of how this database can be utilized as a reference as well as for hypothesis generation. First, we suggest a putative role for miR-21 in the microglial spinal injury response. Second, we highlight data indicating that differential microRNA expression, specifically miR-326, may in part explain regional differences in inflammatory cells. Finally, we show that miR-383 expression is enriched in cortical glutamatergic neurons, suggesting a unique role in these cells. These examples illustrate the database’s utility in guiding research towards unstudied regulators in the CNS. This novel resource will aid future research into microRNA-based regulatory mechanisms responsible for cellular phenotypes within the CNS. |
format |
article |
author |
Nathan Pomper Yating Liu Mariah L. Hoye Joseph D. Dougherty Timothy M. Miller |
author_facet |
Nathan Pomper Yating Liu Mariah L. Hoye Joseph D. Dougherty Timothy M. Miller |
author_sort |
Nathan Pomper |
title |
CNS microRNA profiles: a database for cell type enriched microRNA expression across the mouse central nervous system |
title_short |
CNS microRNA profiles: a database for cell type enriched microRNA expression across the mouse central nervous system |
title_full |
CNS microRNA profiles: a database for cell type enriched microRNA expression across the mouse central nervous system |
title_fullStr |
CNS microRNA profiles: a database for cell type enriched microRNA expression across the mouse central nervous system |
title_full_unstemmed |
CNS microRNA profiles: a database for cell type enriched microRNA expression across the mouse central nervous system |
title_sort |
cns microrna profiles: a database for cell type enriched microrna expression across the mouse central nervous system |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/354025229cc74c27b4dd2e4797a05681 |
work_keys_str_mv |
AT nathanpomper cnsmicrornaprofilesadatabaseforcelltypeenrichedmicrornaexpressionacrossthemousecentralnervoussystem AT yatingliu cnsmicrornaprofilesadatabaseforcelltypeenrichedmicrornaexpressionacrossthemousecentralnervoussystem AT mariahlhoye cnsmicrornaprofilesadatabaseforcelltypeenrichedmicrornaexpressionacrossthemousecentralnervoussystem AT josephddougherty cnsmicrornaprofilesadatabaseforcelltypeenrichedmicrornaexpressionacrossthemousecentralnervoussystem AT timothymmiller cnsmicrornaprofilesadatabaseforcelltypeenrichedmicrornaexpressionacrossthemousecentralnervoussystem |
_version_ |
1718383863258939392 |