Deterministic and probabilistic evaluation of raw and post-processing monthly precipitation forecasts: a case study of China
Monthly Precipitation Forecasts (MPF) play a critical role in drought monitoring, hydrological forecasting and water resources management. In this study, we applied two advanced Machine Learning Models (MLM) and latest General Circulation Models (GCM) to generate deterministic MPFs with a resolution...
Guardado en:
Autores principales: | Yujie Li, Bin Xu, Dong Wang, QJ Wang, Xiongwei Zheng, Jiliang Xu, Fen Zhou, Huaping Huang, Yueping Xu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/35432b20f4ff41c39aa6be768780e224 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Impact of climate change on hydro-climatological parameters in North Cyprus: application of artificial intelligence-based statistical downscaling models
por: Gozen Elkiran, et al.
Publicado: (2021) -
Precipitation in the Czech Republic in Light of Subjective and Objective Classifications of Circulation Types
por: Jan Řehoř, et al.
Publicado: (2021) -
DEVELOPMENT OF A MARKOV MODEL OF THE INFORMATION ENVIRONMENT AS A COMMUNICATION SYSTEM IN THE SCIENTIFIC SPHERE
por: O. Kolesnikov, et al.
Publicado: (2020) -
DEVELOPMENT OF A MARKOV MODEL OF THE INFORMATION ENVIRONMENT AS A COMMUNICATION SYSTEM IN THE SCIENTIFIC SPHERE
por: O. Kolesnikov, et al.
Publicado: (2020) -
TECHNOLOGY TRANSFER OFFICE MODEL
por: D. Tymchenko, et al.
Publicado: (2020)