Real-Time Identification of Rice Weeds by UAV Low-Altitude Remote Sensing Based on Improved Semantic Segmentation Model
Real-time analysis of UAV low-altitude remote sensing images at airborne terminals facilitates the timely monitoring of weeds in the farmland. Aiming at the real-time identification of rice weeds by UAV low-altitude remote sensing, two improved identification models, MobileNetV2-UNet and FFB-BiSeNet...
Guardado en:
Autores principales: | Yubin Lan, Kanghua Huang, Chang Yang, Luocheng Lei, Jiahang Ye, Jianling Zhang, Wen Zeng, Yali Zhang, Jizhong Deng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3545b7338c78431a8b9dc465e394d63c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
SGA-Net: Self-Constructing Graph Attention Neural Network for Semantic Segmentation of Remote Sensing Images
por: Wenjie Zi, et al.
Publicado: (2021) -
Memory-Augmented Transformer for Remote Sensing Image Semantic Segmentation
por: Xin Zhao, et al.
Publicado: (2021) -
Region-Enhancing Network for Semantic Segmentation of Remote-Sensing Imagery
por: Bo Zhong, et al.
Publicado: (2021) -
Removal of Biomass and Nutrients by Weeds and Direct-Seeded Rice under Conservation Agriculture in Light-Textured Soils of North-Western India
por: Salwinder Singh Dhaliwal, et al.
Publicado: (2021) -
STransFuse: Fusing Swin Transformer and Convolutional Neural Network for Remote Sensing Image Semantic Segmentation
por: Liang Gao, et al.
Publicado: (2021)