Fus2Net: a novel Convolutional Neural Network for classification of benign and malignant breast tumor in ultrasound images
Abstract Background The rapid development of artificial intelligence technology has improved the capability of automatic breast cancer diagnosis, compared to traditional machine learning methods. Convolutional Neural Network (CNN) can automatically select high efficiency features, which helps to imp...
Guardado en:
Autores principales: | He Ma, Ronghui Tian, Hong Li, Hang Sun, Guoxiu Lu, Ruibo Liu, Zhiguo Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3547486f0dda4b46a3ec8400cf4e253f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Classification of Benign and Malignant Lung Nodules Based on Deep Convolutional Network Feature Extraction
por: Enhui Lv, et al.
Publicado: (2021) -
Automatic differentiation of thyroid scintigram by deep convolutional neural network: a dual center study
por: Pei Yang, et al.
Publicado: (2021) -
A long-term retrospective study of ultrasound-guided microwave ablation of thyroid benign solid nodules
por: Junfeng Zhao, et al.
Publicado: (2021) -
Sonication strategies toward volumetric ultrasound hyperthermia treatment using the ExAblate body MRgFUS system
por: Kisoo Kim, et al.
Publicado: (2021) -
Point-of-Care Ultrasound: New Concepts and Future Trends
por: Yaoting Wang, MD, Huihui Chai, MD, Ruizhong Ye, MD, Jingzhi Li, MD, PhD, Ji-Bin Liu, MD, Chen Lin, Chengzhong Peng, MD
Publicado: (2021)