Fus2Net: a novel Convolutional Neural Network for classification of benign and malignant breast tumor in ultrasound images
Abstract Background The rapid development of artificial intelligence technology has improved the capability of automatic breast cancer diagnosis, compared to traditional machine learning methods. Convolutional Neural Network (CNN) can automatically select high efficiency features, which helps to imp...
Enregistré dans:
Auteurs principaux: | He Ma, Ronghui Tian, Hong Li, Hang Sun, Guoxiu Lu, Ruibo Liu, Zhiguo Wang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
BMC
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3547486f0dda4b46a3ec8400cf4e253f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Classification of Benign and Malignant Lung Nodules Based on Deep Convolutional Network Feature Extraction
par: Enhui Lv, et autres
Publié: (2021) -
Automatic differentiation of thyroid scintigram by deep convolutional neural network: a dual center study
par: Pei Yang, et autres
Publié: (2021) -
A long-term retrospective study of ultrasound-guided microwave ablation of thyroid benign solid nodules
par: Junfeng Zhao, et autres
Publié: (2021) -
Sonication strategies toward volumetric ultrasound hyperthermia treatment using the ExAblate body MRgFUS system
par: Kisoo Kim, et autres
Publié: (2021) -
Point-of-Care Ultrasound: New Concepts and Future Trends
par: Yaoting Wang, MD, Huihui Chai, MD, Ruizhong Ye, MD, Jingzhi Li, MD, PhD, Ji-Bin Liu, MD, Chen Lin, Chengzhong Peng, MD
Publié: (2021)