Improving the accuracy of medical diagnosis with causal machine learning
In medical diagnosis a doctor aims to explain a patient’s symptoms by determining the diseases causing them, while existing diagnostic algorithms are purely associative. Here, the authors reformulate diagnosis as a counterfactual inference task and derive new counterfactual diagnostic algorithms.
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/354f6c4524cb465f9ff459a9e2354e2a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In medical diagnosis a doctor aims to explain a patient’s symptoms by determining the diseases causing them, while existing diagnostic algorithms are purely associative. Here, the authors reformulate diagnosis as a counterfactual inference task and derive new counterfactual diagnostic algorithms. |
---|