Improving the accuracy of medical diagnosis with causal machine learning
In medical diagnosis a doctor aims to explain a patient’s symptoms by determining the diseases causing them, while existing diagnostic algorithms are purely associative. Here, the authors reformulate diagnosis as a counterfactual inference task and derive new counterfactual diagnostic algorithms.
Guardado en:
Autores principales: | Jonathan G. Richens, Ciarán M. Lee, Saurabh Johri |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/354f6c4524cb465f9ff459a9e2354e2a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Publisher Correction: Improving the accuracy of medical diagnosis with causal machine learning
por: Jonathan G. Richens, et al.
Publicado: (2020) -
Author Correction: Improving the accuracy of medical diagnosis with causal machine learning
por: Jonathan G. Richens, et al.
Publicado: (2021) -
Improving the Accuracy of Network Intrusion Detection with Causal Machine Learning
por: Zengri Zeng, et al.
Publicado: (2021) -
An application of machine learning to haematological diagnosis
por: Gregor Gunčar, et al.
Publicado: (2018) -
Machine learning with persistent homology and chemical word embeddings improves prediction accuracy and interpretability in metal-organic frameworks
por: Aditi S. Krishnapriyan, et al.
Publicado: (2021)