Strong Convergence Theorems by Shrinking Projection Methods for Class <inline-formula> <graphic file="1687-1812-2011-681214-i1.gif"/></inline-formula> Mappings

<p/> <p>We prove a strong convergence theorem by a shrinking projection method for the class of <inline-formula> <graphic file="1687-1812-2011-681214-i2.gif"/></inline-formula> mappings. Using this theorem, we get a new result. We also describe a shrinking pro...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Su Fang, Dong Qiao-Li, He Songnian
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2011
Materias:
Acceso en línea:https://doaj.org/article/3558cfedcd1f4b8ba5ffe222deee342e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3558cfedcd1f4b8ba5ffe222deee342e
record_format dspace
spelling oai:doaj.org-article:3558cfedcd1f4b8ba5ffe222deee342e2021-12-02T12:28:13ZStrong Convergence Theorems by Shrinking Projection Methods for Class <inline-formula> <graphic file="1687-1812-2011-681214-i1.gif"/></inline-formula> Mappings1687-18201687-1812https://doaj.org/article/3558cfedcd1f4b8ba5ffe222deee342e2011-01-01T00:00:00Zhttp://www.fixedpointtheoryandapplications.com/content/2011/681214https://doaj.org/toc/1687-1820https://doaj.org/toc/1687-1812<p/> <p>We prove a strong convergence theorem by a shrinking projection method for the class of <inline-formula> <graphic file="1687-1812-2011-681214-i2.gif"/></inline-formula> mappings. Using this theorem, we get a new result. We also describe a shrinking projection method for a nonexpansive mapping on Hilbert spaces, which is the same as that of Takahashi et al. (2008).</p>Su FangDong Qiao-LiHe SongnianSpringerOpenarticleApplied mathematics. Quantitative methodsT57-57.97AnalysisQA299.6-433ENFixed Point Theory and Applications, Vol 2011, Iss 1, p 681214 (2011)
institution DOAJ
collection DOAJ
language EN
topic Applied mathematics. Quantitative methods
T57-57.97
Analysis
QA299.6-433
spellingShingle Applied mathematics. Quantitative methods
T57-57.97
Analysis
QA299.6-433
Su Fang
Dong Qiao-Li
He Songnian
Strong Convergence Theorems by Shrinking Projection Methods for Class <inline-formula> <graphic file="1687-1812-2011-681214-i1.gif"/></inline-formula> Mappings
description <p/> <p>We prove a strong convergence theorem by a shrinking projection method for the class of <inline-formula> <graphic file="1687-1812-2011-681214-i2.gif"/></inline-formula> mappings. Using this theorem, we get a new result. We also describe a shrinking projection method for a nonexpansive mapping on Hilbert spaces, which is the same as that of Takahashi et al. (2008).</p>
format article
author Su Fang
Dong Qiao-Li
He Songnian
author_facet Su Fang
Dong Qiao-Li
He Songnian
author_sort Su Fang
title Strong Convergence Theorems by Shrinking Projection Methods for Class <inline-formula> <graphic file="1687-1812-2011-681214-i1.gif"/></inline-formula> Mappings
title_short Strong Convergence Theorems by Shrinking Projection Methods for Class <inline-formula> <graphic file="1687-1812-2011-681214-i1.gif"/></inline-formula> Mappings
title_full Strong Convergence Theorems by Shrinking Projection Methods for Class <inline-formula> <graphic file="1687-1812-2011-681214-i1.gif"/></inline-formula> Mappings
title_fullStr Strong Convergence Theorems by Shrinking Projection Methods for Class <inline-formula> <graphic file="1687-1812-2011-681214-i1.gif"/></inline-formula> Mappings
title_full_unstemmed Strong Convergence Theorems by Shrinking Projection Methods for Class <inline-formula> <graphic file="1687-1812-2011-681214-i1.gif"/></inline-formula> Mappings
title_sort strong convergence theorems by shrinking projection methods for class <inline-formula> <graphic file="1687-1812-2011-681214-i1.gif"/></inline-formula> mappings
publisher SpringerOpen
publishDate 2011
url https://doaj.org/article/3558cfedcd1f4b8ba5ffe222deee342e
work_keys_str_mv AT sufang strongconvergencetheoremsbyshrinkingprojectionmethodsforclassinlineformulagraphicfile168718122011681214i1gifinlineformulamappings
AT dongqiaoli strongconvergencetheoremsbyshrinkingprojectionmethodsforclassinlineformulagraphicfile168718122011681214i1gifinlineformulamappings
AT hesongnian strongconvergencetheoremsbyshrinkingprojectionmethodsforclassinlineformulagraphicfile168718122011681214i1gifinlineformulamappings
_version_ 1718394446954889216