Strong Convergence Theorems by Shrinking Projection Methods for Class <inline-formula> <graphic file="1687-1812-2011-681214-i1.gif"/></inline-formula> Mappings
<p/> <p>We prove a strong convergence theorem by a shrinking projection method for the class of <inline-formula> <graphic file="1687-1812-2011-681214-i2.gif"/></inline-formula> mappings. Using this theorem, we get a new result. We also describe a shrinking pro...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2011
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3558cfedcd1f4b8ba5ffe222deee342e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3558cfedcd1f4b8ba5ffe222deee342e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3558cfedcd1f4b8ba5ffe222deee342e2021-12-02T12:28:13ZStrong Convergence Theorems by Shrinking Projection Methods for Class <inline-formula> <graphic file="1687-1812-2011-681214-i1.gif"/></inline-formula> Mappings1687-18201687-1812https://doaj.org/article/3558cfedcd1f4b8ba5ffe222deee342e2011-01-01T00:00:00Zhttp://www.fixedpointtheoryandapplications.com/content/2011/681214https://doaj.org/toc/1687-1820https://doaj.org/toc/1687-1812<p/> <p>We prove a strong convergence theorem by a shrinking projection method for the class of <inline-formula> <graphic file="1687-1812-2011-681214-i2.gif"/></inline-formula> mappings. Using this theorem, we get a new result. We also describe a shrinking projection method for a nonexpansive mapping on Hilbert spaces, which is the same as that of Takahashi et al. (2008).</p>Su FangDong Qiao-LiHe SongnianSpringerOpenarticleApplied mathematics. Quantitative methodsT57-57.97AnalysisQA299.6-433ENFixed Point Theory and Applications, Vol 2011, Iss 1, p 681214 (2011) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Applied mathematics. Quantitative methods T57-57.97 Analysis QA299.6-433 |
spellingShingle |
Applied mathematics. Quantitative methods T57-57.97 Analysis QA299.6-433 Su Fang Dong Qiao-Li He Songnian Strong Convergence Theorems by Shrinking Projection Methods for Class <inline-formula> <graphic file="1687-1812-2011-681214-i1.gif"/></inline-formula> Mappings |
description |
<p/> <p>We prove a strong convergence theorem by a shrinking projection method for the class of <inline-formula> <graphic file="1687-1812-2011-681214-i2.gif"/></inline-formula> mappings. Using this theorem, we get a new result. We also describe a shrinking projection method for a nonexpansive mapping on Hilbert spaces, which is the same as that of Takahashi et al. (2008).</p> |
format |
article |
author |
Su Fang Dong Qiao-Li He Songnian |
author_facet |
Su Fang Dong Qiao-Li He Songnian |
author_sort |
Su Fang |
title |
Strong Convergence Theorems by Shrinking Projection Methods for Class <inline-formula> <graphic file="1687-1812-2011-681214-i1.gif"/></inline-formula> Mappings |
title_short |
Strong Convergence Theorems by Shrinking Projection Methods for Class <inline-formula> <graphic file="1687-1812-2011-681214-i1.gif"/></inline-formula> Mappings |
title_full |
Strong Convergence Theorems by Shrinking Projection Methods for Class <inline-formula> <graphic file="1687-1812-2011-681214-i1.gif"/></inline-formula> Mappings |
title_fullStr |
Strong Convergence Theorems by Shrinking Projection Methods for Class <inline-formula> <graphic file="1687-1812-2011-681214-i1.gif"/></inline-formula> Mappings |
title_full_unstemmed |
Strong Convergence Theorems by Shrinking Projection Methods for Class <inline-formula> <graphic file="1687-1812-2011-681214-i1.gif"/></inline-formula> Mappings |
title_sort |
strong convergence theorems by shrinking projection methods for class <inline-formula> <graphic file="1687-1812-2011-681214-i1.gif"/></inline-formula> mappings |
publisher |
SpringerOpen |
publishDate |
2011 |
url |
https://doaj.org/article/3558cfedcd1f4b8ba5ffe222deee342e |
work_keys_str_mv |
AT sufang strongconvergencetheoremsbyshrinkingprojectionmethodsforclassinlineformulagraphicfile168718122011681214i1gifinlineformulamappings AT dongqiaoli strongconvergencetheoremsbyshrinkingprojectionmethodsforclassinlineformulagraphicfile168718122011681214i1gifinlineformulamappings AT hesongnian strongconvergencetheoremsbyshrinkingprojectionmethodsforclassinlineformulagraphicfile168718122011681214i1gifinlineformulamappings |
_version_ |
1718394446954889216 |