Polarization control in spin-transparent hadron colliders by weak-field navigators involving lattice enhancement effect

Abstract Hadron polarization control schemes for Spin Transparent (ST) synchrotrons are analyzed. The spin dynamics and beam polarization in such synchrotrons are controlled by spin navigators (SN) which are special small insertions of weak magnetic fields. An SN stabilizes the beam polarization and...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yu. N. Filatov, A. M. Kondratenko, M. A. Kondratenko, Ya. S. Derbenev, V. S. Morozov, A. V. Butenko, E. M. Syresin, E. D. Tsyplakov
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2021
Materias:
Acceso en línea:https://doaj.org/article/356f2e1c7d42458985e8298497620a14
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:356f2e1c7d42458985e8298497620a14
record_format dspace
spelling oai:doaj.org-article:356f2e1c7d42458985e8298497620a142021-11-14T12:13:46ZPolarization control in spin-transparent hadron colliders by weak-field navigators involving lattice enhancement effect10.1140/epjc/s10052-021-09750-01434-60441434-6052https://doaj.org/article/356f2e1c7d42458985e8298497620a142021-11-01T00:00:00Zhttps://doi.org/10.1140/epjc/s10052-021-09750-0https://doaj.org/toc/1434-6044https://doaj.org/toc/1434-6052Abstract Hadron polarization control schemes for Spin Transparent (ST) synchrotrons are analyzed. The spin dynamics and beam polarization in such synchrotrons are controlled by spin navigators (SN) which are special small insertions of weak magnetic fields. An SN stabilizes the beam polarization and allows for setting any desirable spin orientation at an interaction point in the operational regime, including a frequent spin flip. We present a general approach to design of SNs. We distinguish different types of SNs, namely, those not causing closed orbit perturbation as well as those producing local and global orbit distortions. In the second case, the concept of the spin response function in an ST synchrotron is applied and expanded to reveal the effect of the SN strength enhancement by magnetic lattice of the synchrotron. We provide conceptual schemes for SN designs using longitudinal and transverse magnetic fields allowing for polarization control at low as well as high energies. We also develop the ST concept for ultra-high energies. This development may enable and stimulate interest in polarized beam experiments in possible polarized collider projects such as Large Hadron Collider (LHC), Future Circular Collider (FCC) and Super Proton Proton Collider (SPPC).Yu. N. FilatovA. M. KondratenkoM. A. KondratenkoYa. S. DerbenevV. S. MorozovA. V. ButenkoE. M. SyresinE. D. TsyplakovSpringerOpenarticleAstrophysicsQB460-466Nuclear and particle physics. Atomic energy. RadioactivityQC770-798ENEuropean Physical Journal C: Particles and Fields, Vol 81, Iss 11, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Astrophysics
QB460-466
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
spellingShingle Astrophysics
QB460-466
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
Yu. N. Filatov
A. M. Kondratenko
M. A. Kondratenko
Ya. S. Derbenev
V. S. Morozov
A. V. Butenko
E. M. Syresin
E. D. Tsyplakov
Polarization control in spin-transparent hadron colliders by weak-field navigators involving lattice enhancement effect
description Abstract Hadron polarization control schemes for Spin Transparent (ST) synchrotrons are analyzed. The spin dynamics and beam polarization in such synchrotrons are controlled by spin navigators (SN) which are special small insertions of weak magnetic fields. An SN stabilizes the beam polarization and allows for setting any desirable spin orientation at an interaction point in the operational regime, including a frequent spin flip. We present a general approach to design of SNs. We distinguish different types of SNs, namely, those not causing closed orbit perturbation as well as those producing local and global orbit distortions. In the second case, the concept of the spin response function in an ST synchrotron is applied and expanded to reveal the effect of the SN strength enhancement by magnetic lattice of the synchrotron. We provide conceptual schemes for SN designs using longitudinal and transverse magnetic fields allowing for polarization control at low as well as high energies. We also develop the ST concept for ultra-high energies. This development may enable and stimulate interest in polarized beam experiments in possible polarized collider projects such as Large Hadron Collider (LHC), Future Circular Collider (FCC) and Super Proton Proton Collider (SPPC).
format article
author Yu. N. Filatov
A. M. Kondratenko
M. A. Kondratenko
Ya. S. Derbenev
V. S. Morozov
A. V. Butenko
E. M. Syresin
E. D. Tsyplakov
author_facet Yu. N. Filatov
A. M. Kondratenko
M. A. Kondratenko
Ya. S. Derbenev
V. S. Morozov
A. V. Butenko
E. M. Syresin
E. D. Tsyplakov
author_sort Yu. N. Filatov
title Polarization control in spin-transparent hadron colliders by weak-field navigators involving lattice enhancement effect
title_short Polarization control in spin-transparent hadron colliders by weak-field navigators involving lattice enhancement effect
title_full Polarization control in spin-transparent hadron colliders by weak-field navigators involving lattice enhancement effect
title_fullStr Polarization control in spin-transparent hadron colliders by weak-field navigators involving lattice enhancement effect
title_full_unstemmed Polarization control in spin-transparent hadron colliders by weak-field navigators involving lattice enhancement effect
title_sort polarization control in spin-transparent hadron colliders by weak-field navigators involving lattice enhancement effect
publisher SpringerOpen
publishDate 2021
url https://doaj.org/article/356f2e1c7d42458985e8298497620a14
work_keys_str_mv AT yunfilatov polarizationcontrolinspintransparenthadroncollidersbyweakfieldnavigatorsinvolvinglatticeenhancementeffect
AT amkondratenko polarizationcontrolinspintransparenthadroncollidersbyweakfieldnavigatorsinvolvinglatticeenhancementeffect
AT makondratenko polarizationcontrolinspintransparenthadroncollidersbyweakfieldnavigatorsinvolvinglatticeenhancementeffect
AT yasderbenev polarizationcontrolinspintransparenthadroncollidersbyweakfieldnavigatorsinvolvinglatticeenhancementeffect
AT vsmorozov polarizationcontrolinspintransparenthadroncollidersbyweakfieldnavigatorsinvolvinglatticeenhancementeffect
AT avbutenko polarizationcontrolinspintransparenthadroncollidersbyweakfieldnavigatorsinvolvinglatticeenhancementeffect
AT emsyresin polarizationcontrolinspintransparenthadroncollidersbyweakfieldnavigatorsinvolvinglatticeenhancementeffect
AT edtsyplakov polarizationcontrolinspintransparenthadroncollidersbyweakfieldnavigatorsinvolvinglatticeenhancementeffect
_version_ 1718429339677097984