Nanodiscs as a therapeutic delivery agent: inhibition of respiratory syncytial virus infection in the lung
Mari Numata,1 Yelena V Grinkova,2 James R Mitchell,1 Hong Wei Chu,1 Stephen G Sligar,2 Dennis R Voelker1 1Department of Medicine, Program in Cell Biology, National Jewish Health, Denver, CO, USA; 2Department of Biochemistry, University of Illinois, Urbana, IL, USA Abstract: There is increasing inter...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/35709cc1895d41f49e070609d2ad7167 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:35709cc1895d41f49e070609d2ad7167 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:35709cc1895d41f49e070609d2ad71672021-12-02T00:52:04ZNanodiscs as a therapeutic delivery agent: inhibition of respiratory syncytial virus infection in the lung1176-91141178-2013https://doaj.org/article/35709cc1895d41f49e070609d2ad71672013-04-01T00:00:00Zhttp://www.dovepress.com/nanodiscs-as-a-therapeutic-delivery-agent-inhibition-of-respiratory-sy-a12754https://doaj.org/toc/1176-9114https://doaj.org/toc/1178-2013Mari Numata,1 Yelena V Grinkova,2 James R Mitchell,1 Hong Wei Chu,1 Stephen G Sligar,2 Dennis R Voelker1 1Department of Medicine, Program in Cell Biology, National Jewish Health, Denver, CO, USA; 2Department of Biochemistry, University of Illinois, Urbana, IL, USA Abstract: There is increasing interest in the application of nanotechnology to solve the difficult problem of therapeutic administration of pharmaceuticals. Nanodiscs, composed of a stable discoidal lipid bilayer encircled by an amphipathic membrane scaffold protein that is an engineered variant of the human Apo A-I constituent of high-density lipoproteins, have been a successful platform for providing a controlled lipid composition in particles that are especially useful for investigating membrane protein structure and function. In this communication, we demonstrate that nanodiscs are effective in suppressing respiratory syncytial viral (RSV) infection both in vitro and in vivo when self-assembled with the minor pulmonary surfactant phospholipid palmitoyloleoylphosphatidylglycerol (POPG). Preparations of nanodiscs containing POPG (nPOPG) antagonized interleukin-8 production from Beas2B epithelial cells challenged by RSV infection, with an IC50 of 19.3 µg/mL. In quantitative in vitro plaque assays, nPOPG reduced RSV infection by 93%. In vivo, nPOPG suppressed inflammatory cell infiltration into the lung, as well as IFN-γ production in response to RSV challenge. nPOPG also completely suppressed the histopathological changes in lung tissue elicited by RSV and reduced the amount of virus recovered from lung tissue by 96%. The turnover rate of nPOPG was estimated to have a half-time of 60–120 minutes (m), based upon quantification of the recovery of the human Apo A-I constituent. From these data, we conclude that nPOPG is a potent antagonist of RSV infection and its inflammatory sequelae both in vitro and in vivo. Keywords: nanodiscs, therapeutic delivery, anti-viral, innate immunity, phospholipidsNumata MGrinkova YVMitchell JRChu HWSligar SGVoelker DRDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2013, Iss default, Pp 1417-1427 (2013) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine (General) R5-920 |
spellingShingle |
Medicine (General) R5-920 Numata M Grinkova YV Mitchell JR Chu HW Sligar SG Voelker DR Nanodiscs as a therapeutic delivery agent: inhibition of respiratory syncytial virus infection in the lung |
description |
Mari Numata,1 Yelena V Grinkova,2 James R Mitchell,1 Hong Wei Chu,1 Stephen G Sligar,2 Dennis R Voelker1 1Department of Medicine, Program in Cell Biology, National Jewish Health, Denver, CO, USA; 2Department of Biochemistry, University of Illinois, Urbana, IL, USA Abstract: There is increasing interest in the application of nanotechnology to solve the difficult problem of therapeutic administration of pharmaceuticals. Nanodiscs, composed of a stable discoidal lipid bilayer encircled by an amphipathic membrane scaffold protein that is an engineered variant of the human Apo A-I constituent of high-density lipoproteins, have been a successful platform for providing a controlled lipid composition in particles that are especially useful for investigating membrane protein structure and function. In this communication, we demonstrate that nanodiscs are effective in suppressing respiratory syncytial viral (RSV) infection both in vitro and in vivo when self-assembled with the minor pulmonary surfactant phospholipid palmitoyloleoylphosphatidylglycerol (POPG). Preparations of nanodiscs containing POPG (nPOPG) antagonized interleukin-8 production from Beas2B epithelial cells challenged by RSV infection, with an IC50 of 19.3 µg/mL. In quantitative in vitro plaque assays, nPOPG reduced RSV infection by 93%. In vivo, nPOPG suppressed inflammatory cell infiltration into the lung, as well as IFN-γ production in response to RSV challenge. nPOPG also completely suppressed the histopathological changes in lung tissue elicited by RSV and reduced the amount of virus recovered from lung tissue by 96%. The turnover rate of nPOPG was estimated to have a half-time of 60–120 minutes (m), based upon quantification of the recovery of the human Apo A-I constituent. From these data, we conclude that nPOPG is a potent antagonist of RSV infection and its inflammatory sequelae both in vitro and in vivo. Keywords: nanodiscs, therapeutic delivery, anti-viral, innate immunity, phospholipids |
format |
article |
author |
Numata M Grinkova YV Mitchell JR Chu HW Sligar SG Voelker DR |
author_facet |
Numata M Grinkova YV Mitchell JR Chu HW Sligar SG Voelker DR |
author_sort |
Numata M |
title |
Nanodiscs as a therapeutic delivery agent: inhibition of respiratory syncytial virus infection in the lung |
title_short |
Nanodiscs as a therapeutic delivery agent: inhibition of respiratory syncytial virus infection in the lung |
title_full |
Nanodiscs as a therapeutic delivery agent: inhibition of respiratory syncytial virus infection in the lung |
title_fullStr |
Nanodiscs as a therapeutic delivery agent: inhibition of respiratory syncytial virus infection in the lung |
title_full_unstemmed |
Nanodiscs as a therapeutic delivery agent: inhibition of respiratory syncytial virus infection in the lung |
title_sort |
nanodiscs as a therapeutic delivery agent: inhibition of respiratory syncytial virus infection in the lung |
publisher |
Dove Medical Press |
publishDate |
2013 |
url |
https://doaj.org/article/35709cc1895d41f49e070609d2ad7167 |
work_keys_str_mv |
AT numatam nanodiscsasatherapeuticdeliveryagentinhibitionofrespiratorysyncytialvirusinfectioninthelung AT grinkovayv nanodiscsasatherapeuticdeliveryagentinhibitionofrespiratorysyncytialvirusinfectioninthelung AT mitchelljr nanodiscsasatherapeuticdeliveryagentinhibitionofrespiratorysyncytialvirusinfectioninthelung AT chuhw nanodiscsasatherapeuticdeliveryagentinhibitionofrespiratorysyncytialvirusinfectioninthelung AT sligarsg nanodiscsasatherapeuticdeliveryagentinhibitionofrespiratorysyncytialvirusinfectioninthelung AT voelkerdr nanodiscsasatherapeuticdeliveryagentinhibitionofrespiratorysyncytialvirusinfectioninthelung |
_version_ |
1718403430641303552 |