BiFA-YOLO: A Novel YOLO-Based Method for Arbitrary-Oriented Ship Detection in High-Resolution SAR Images
Due to its great application value in the military and civilian fields, ship detection in synthetic aperture radar (SAR) images has always attracted much attention. However, ship targets in High-Resolution (HR) SAR images show the significant characteristics of multi-scale, arbitrary directions and...
Guardado en:
Autores principales: | Zhongzhen Sun, Xiangguang Leng, Yu Lei, Boli Xiong, Kefeng Ji, Gangyao Kuang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/358571f5763145a193017d08c92a37de |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Efficient Generation of Artificial Training DB for Ship Detection Using Satellite SAR Images
por: Seung-Jae Lee, et al.
Publicado: (2021) -
First Results on Wake Detection in SAR Images by Deep Learning
por: Roberto Del Prete, et al.
Publicado: (2021) -
L-Band SAR Co-Polarized Phase Difference Modeling for Corn Fields
por: Matías Ernesto Barber, et al.
Publicado: (2021) -
A Novel Guided Anchor Siamese Network for Arbitrary Target-of-Interest Tracking in Video-SAR
por: Jinyu Bao, et al.
Publicado: (2021) -
Improved Accuracy of Velocity Estimation for Cruising Ships by Temporal Differences Between Two Extreme Sublook Images of ALOS-2 Spotlight SAR Images With Long Integration Times
por: Takero Yoshida, et al.
Publicado: (2021)