Accurate autocorrelation modeling substantially improves fMRI reliability

There has been recent controversy over the validity of commonly-used software packages for functional MRI (fMRI) data analysis. Here, the authors compare the performance of three leading packages (AFNI, FSL, SPM) in terms of temporal autocorrelation modeling, a key statistical step in fMRI analysis.

Guardado en:
Detalles Bibliográficos
Autores principales: Wiktor Olszowy, John Aston, Catarina Rua, Guy B. Williams
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/358c32abb05f4df988f0365662606468
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:358c32abb05f4df988f0365662606468
record_format dspace
spelling oai:doaj.org-article:358c32abb05f4df988f03656626064682021-12-02T16:57:54ZAccurate autocorrelation modeling substantially improves fMRI reliability10.1038/s41467-019-09230-w2041-1723https://doaj.org/article/358c32abb05f4df988f03656626064682019-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-09230-whttps://doaj.org/toc/2041-1723There has been recent controversy over the validity of commonly-used software packages for functional MRI (fMRI) data analysis. Here, the authors compare the performance of three leading packages (AFNI, FSL, SPM) in terms of temporal autocorrelation modeling, a key statistical step in fMRI analysis.Wiktor OlszowyJohn AstonCatarina RuaGuy B. WilliamsNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-11 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Wiktor Olszowy
John Aston
Catarina Rua
Guy B. Williams
Accurate autocorrelation modeling substantially improves fMRI reliability
description There has been recent controversy over the validity of commonly-used software packages for functional MRI (fMRI) data analysis. Here, the authors compare the performance of three leading packages (AFNI, FSL, SPM) in terms of temporal autocorrelation modeling, a key statistical step in fMRI analysis.
format article
author Wiktor Olszowy
John Aston
Catarina Rua
Guy B. Williams
author_facet Wiktor Olszowy
John Aston
Catarina Rua
Guy B. Williams
author_sort Wiktor Olszowy
title Accurate autocorrelation modeling substantially improves fMRI reliability
title_short Accurate autocorrelation modeling substantially improves fMRI reliability
title_full Accurate autocorrelation modeling substantially improves fMRI reliability
title_fullStr Accurate autocorrelation modeling substantially improves fMRI reliability
title_full_unstemmed Accurate autocorrelation modeling substantially improves fMRI reliability
title_sort accurate autocorrelation modeling substantially improves fmri reliability
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/358c32abb05f4df988f0365662606468
work_keys_str_mv AT wiktorolszowy accurateautocorrelationmodelingsubstantiallyimprovesfmrireliability
AT johnaston accurateautocorrelationmodelingsubstantiallyimprovesfmrireliability
AT catarinarua accurateautocorrelationmodelingsubstantiallyimprovesfmrireliability
AT guybwilliams accurateautocorrelationmodelingsubstantiallyimprovesfmrireliability
_version_ 1718382439830650880