Accurate autocorrelation modeling substantially improves fMRI reliability
There has been recent controversy over the validity of commonly-used software packages for functional MRI (fMRI) data analysis. Here, the authors compare the performance of three leading packages (AFNI, FSL, SPM) in terms of temporal autocorrelation modeling, a key statistical step in fMRI analysis.
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/358c32abb05f4df988f0365662606468 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:358c32abb05f4df988f0365662606468 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:358c32abb05f4df988f03656626064682021-12-02T16:57:54ZAccurate autocorrelation modeling substantially improves fMRI reliability10.1038/s41467-019-09230-w2041-1723https://doaj.org/article/358c32abb05f4df988f03656626064682019-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-09230-whttps://doaj.org/toc/2041-1723There has been recent controversy over the validity of commonly-used software packages for functional MRI (fMRI) data analysis. Here, the authors compare the performance of three leading packages (AFNI, FSL, SPM) in terms of temporal autocorrelation modeling, a key statistical step in fMRI analysis.Wiktor OlszowyJohn AstonCatarina RuaGuy B. WilliamsNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-11 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Wiktor Olszowy John Aston Catarina Rua Guy B. Williams Accurate autocorrelation modeling substantially improves fMRI reliability |
description |
There has been recent controversy over the validity of commonly-used software packages for functional MRI (fMRI) data analysis. Here, the authors compare the performance of three leading packages (AFNI, FSL, SPM) in terms of temporal autocorrelation modeling, a key statistical step in fMRI analysis. |
format |
article |
author |
Wiktor Olszowy John Aston Catarina Rua Guy B. Williams |
author_facet |
Wiktor Olszowy John Aston Catarina Rua Guy B. Williams |
author_sort |
Wiktor Olszowy |
title |
Accurate autocorrelation modeling substantially improves fMRI reliability |
title_short |
Accurate autocorrelation modeling substantially improves fMRI reliability |
title_full |
Accurate autocorrelation modeling substantially improves fMRI reliability |
title_fullStr |
Accurate autocorrelation modeling substantially improves fMRI reliability |
title_full_unstemmed |
Accurate autocorrelation modeling substantially improves fMRI reliability |
title_sort |
accurate autocorrelation modeling substantially improves fmri reliability |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/358c32abb05f4df988f0365662606468 |
work_keys_str_mv |
AT wiktorolszowy accurateautocorrelationmodelingsubstantiallyimprovesfmrireliability AT johnaston accurateautocorrelationmodelingsubstantiallyimprovesfmrireliability AT catarinarua accurateautocorrelationmodelingsubstantiallyimprovesfmrireliability AT guybwilliams accurateautocorrelationmodelingsubstantiallyimprovesfmrireliability |
_version_ |
1718382439830650880 |