The Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model

Recently, bounded distributions have attracted attention. These distributions are frequently used in modeling rate and proportion data sets. In this study, a new alternative model is proposed for modeling bounded data sets. Parameter estimations of the proposed distribution are obtained via maximum...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mustafa Ç. Korkmaz, Emrah Altun, Morad Alizadeh, M. El-Morshedy
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/35a1c23dba29444faf14f1da3123a426
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:35a1c23dba29444faf14f1da3123a426
record_format dspace
spelling oai:doaj.org-article:35a1c23dba29444faf14f1da3123a4262021-11-11T18:13:25ZThe Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model10.3390/math92126342227-7390https://doaj.org/article/35a1c23dba29444faf14f1da3123a4262021-10-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2634https://doaj.org/toc/2227-7390Recently, bounded distributions have attracted attention. These distributions are frequently used in modeling rate and proportion data sets. In this study, a new alternative model is proposed for modeling bounded data sets. Parameter estimations of the proposed distribution are obtained via maximum likelihood method. In addition, a new regression model is defined under the proposed distribution and its residual analysis is examined. As a result of the empirical studies on real data sets, it is observed that the proposed regression model gives better results than the unit-Weibull and Kumaraswamy regression models.Mustafa Ç. KorkmazEmrah AltunMorad AlizadehM. El-MorshedyMDPI AGarticleexponential-power distributionpoint estimationquantile regressionresidualsunit exponential-power distributionMathematicsQA1-939ENMathematics, Vol 9, Iss 2634, p 2634 (2021)
institution DOAJ
collection DOAJ
language EN
topic exponential-power distribution
point estimation
quantile regression
residuals
unit exponential-power distribution
Mathematics
QA1-939
spellingShingle exponential-power distribution
point estimation
quantile regression
residuals
unit exponential-power distribution
Mathematics
QA1-939
Mustafa Ç. Korkmaz
Emrah Altun
Morad Alizadeh
M. El-Morshedy
The Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model
description Recently, bounded distributions have attracted attention. These distributions are frequently used in modeling rate and proportion data sets. In this study, a new alternative model is proposed for modeling bounded data sets. Parameter estimations of the proposed distribution are obtained via maximum likelihood method. In addition, a new regression model is defined under the proposed distribution and its residual analysis is examined. As a result of the empirical studies on real data sets, it is observed that the proposed regression model gives better results than the unit-Weibull and Kumaraswamy regression models.
format article
author Mustafa Ç. Korkmaz
Emrah Altun
Morad Alizadeh
M. El-Morshedy
author_facet Mustafa Ç. Korkmaz
Emrah Altun
Morad Alizadeh
M. El-Morshedy
author_sort Mustafa Ç. Korkmaz
title The Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model
title_short The Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model
title_full The Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model
title_fullStr The Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model
title_full_unstemmed The Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model
title_sort log exponential-power distribution: properties, estimations and quantile regression model
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/35a1c23dba29444faf14f1da3123a426
work_keys_str_mv AT mustafackorkmaz thelogexponentialpowerdistributionpropertiesestimationsandquantileregressionmodel
AT emrahaltun thelogexponentialpowerdistributionpropertiesestimationsandquantileregressionmodel
AT moradalizadeh thelogexponentialpowerdistributionpropertiesestimationsandquantileregressionmodel
AT melmorshedy thelogexponentialpowerdistributionpropertiesestimationsandquantileregressionmodel
AT mustafackorkmaz logexponentialpowerdistributionpropertiesestimationsandquantileregressionmodel
AT emrahaltun logexponentialpowerdistributionpropertiesestimationsandquantileregressionmodel
AT moradalizadeh logexponentialpowerdistributionpropertiesestimationsandquantileregressionmodel
AT melmorshedy logexponentialpowerdistributionpropertiesestimationsandquantileregressionmodel
_version_ 1718431875895132160