The Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model
Recently, bounded distributions have attracted attention. These distributions are frequently used in modeling rate and proportion data sets. In this study, a new alternative model is proposed for modeling bounded data sets. Parameter estimations of the proposed distribution are obtained via maximum...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/35a1c23dba29444faf14f1da3123a426 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:35a1c23dba29444faf14f1da3123a426 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:35a1c23dba29444faf14f1da3123a4262021-11-11T18:13:25ZThe Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model10.3390/math92126342227-7390https://doaj.org/article/35a1c23dba29444faf14f1da3123a4262021-10-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2634https://doaj.org/toc/2227-7390Recently, bounded distributions have attracted attention. These distributions are frequently used in modeling rate and proportion data sets. In this study, a new alternative model is proposed for modeling bounded data sets. Parameter estimations of the proposed distribution are obtained via maximum likelihood method. In addition, a new regression model is defined under the proposed distribution and its residual analysis is examined. As a result of the empirical studies on real data sets, it is observed that the proposed regression model gives better results than the unit-Weibull and Kumaraswamy regression models.Mustafa Ç. KorkmazEmrah AltunMorad AlizadehM. El-MorshedyMDPI AGarticleexponential-power distributionpoint estimationquantile regressionresidualsunit exponential-power distributionMathematicsQA1-939ENMathematics, Vol 9, Iss 2634, p 2634 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
exponential-power distribution point estimation quantile regression residuals unit exponential-power distribution Mathematics QA1-939 |
spellingShingle |
exponential-power distribution point estimation quantile regression residuals unit exponential-power distribution Mathematics QA1-939 Mustafa Ç. Korkmaz Emrah Altun Morad Alizadeh M. El-Morshedy The Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model |
description |
Recently, bounded distributions have attracted attention. These distributions are frequently used in modeling rate and proportion data sets. In this study, a new alternative model is proposed for modeling bounded data sets. Parameter estimations of the proposed distribution are obtained via maximum likelihood method. In addition, a new regression model is defined under the proposed distribution and its residual analysis is examined. As a result of the empirical studies on real data sets, it is observed that the proposed regression model gives better results than the unit-Weibull and Kumaraswamy regression models. |
format |
article |
author |
Mustafa Ç. Korkmaz Emrah Altun Morad Alizadeh M. El-Morshedy |
author_facet |
Mustafa Ç. Korkmaz Emrah Altun Morad Alizadeh M. El-Morshedy |
author_sort |
Mustafa Ç. Korkmaz |
title |
The Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model |
title_short |
The Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model |
title_full |
The Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model |
title_fullStr |
The Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model |
title_full_unstemmed |
The Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model |
title_sort |
log exponential-power distribution: properties, estimations and quantile regression model |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/35a1c23dba29444faf14f1da3123a426 |
work_keys_str_mv |
AT mustafackorkmaz thelogexponentialpowerdistributionpropertiesestimationsandquantileregressionmodel AT emrahaltun thelogexponentialpowerdistributionpropertiesestimationsandquantileregressionmodel AT moradalizadeh thelogexponentialpowerdistributionpropertiesestimationsandquantileregressionmodel AT melmorshedy thelogexponentialpowerdistributionpropertiesestimationsandquantileregressionmodel AT mustafackorkmaz logexponentialpowerdistributionpropertiesestimationsandquantileregressionmodel AT emrahaltun logexponentialpowerdistributionpropertiesestimationsandquantileregressionmodel AT moradalizadeh logexponentialpowerdistributionpropertiesestimationsandquantileregressionmodel AT melmorshedy logexponentialpowerdistributionpropertiesestimationsandquantileregressionmodel |
_version_ |
1718431875895132160 |