Approaches for unsupervised identification of data-driven models for flow forecasting in urban drainage systems
In this work, an unsupervised model selection procedure for identifying data-driven forecast models for urban drainage systems is proposed and evaluated. Specifically, we consider the case of predicting inflows to wastewater treatment plants for activating wet weather operation (aeration tank settli...
Guardado en:
Autores principales: | Ari Jóhannesson, Luca Vezzaro, Peter Steen Mikkelsen, Roland Löwe |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/35c8a2c4025e4166b900eab326a609ec |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Optimal least square vector autoregressive moving average for battery state of charge estimation and forecasting
por: Angela Caliwag, et al.
Publicado: (2021) -
EMPIRICAL MODE DECOMPOSITION BASED ON THETA METHOD FOR FORECASTING DAILY STOCK PRICE
por: Mohammad Raquibul Hossain, et al.
Publicado: (2020) -
THE EXPERT SYSTEM OF CONTROL AND KNOWLEDGE ASSESSMENT
por: V. Golovachyova, et al.
Publicado: (2020) -
Pattern Recognition of Human Face With Photos Using KNN Algorithm
por: Dedy Kurniadi, et al.
Publicado: (2021) -
Optimization and improvement of fake news detection using deep learning approaches for societal benefit
por: Tavishee Chauhan, M.E, et al.
Publicado: (2021)