A generalizable and accessible approach to machine learning with global satellite imagery
This paper presents MOSAIKS, a system for planet-scale prediction of multiple outcomes using satellite imagery and machine learning (SIML). MOSAIKS generalizes across prediction domains and has the potential to enhance accessibility of SIML across research disciplines.
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/35ce16c6215c446488bcca5b7caf036c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:35ce16c6215c446488bcca5b7caf036c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:35ce16c6215c446488bcca5b7caf036c2021-12-02T17:56:56ZA generalizable and accessible approach to machine learning with global satellite imagery10.1038/s41467-021-24638-z2041-1723https://doaj.org/article/35ce16c6215c446488bcca5b7caf036c2021-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-24638-zhttps://doaj.org/toc/2041-1723This paper presents MOSAIKS, a system for planet-scale prediction of multiple outcomes using satellite imagery and machine learning (SIML). MOSAIKS generalizes across prediction domains and has the potential to enhance accessibility of SIML across research disciplines.Esther RolfJonathan ProctorTamma CarletonIan BolligerVaishaal ShankarMiyabi IshiharaBenjamin RechtSolomon HsiangNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Esther Rolf Jonathan Proctor Tamma Carleton Ian Bolliger Vaishaal Shankar Miyabi Ishihara Benjamin Recht Solomon Hsiang A generalizable and accessible approach to machine learning with global satellite imagery |
description |
This paper presents MOSAIKS, a system for planet-scale prediction of multiple outcomes using satellite imagery and machine learning (SIML). MOSAIKS generalizes across prediction domains and has the potential to enhance accessibility of SIML across research disciplines. |
format |
article |
author |
Esther Rolf Jonathan Proctor Tamma Carleton Ian Bolliger Vaishaal Shankar Miyabi Ishihara Benjamin Recht Solomon Hsiang |
author_facet |
Esther Rolf Jonathan Proctor Tamma Carleton Ian Bolliger Vaishaal Shankar Miyabi Ishihara Benjamin Recht Solomon Hsiang |
author_sort |
Esther Rolf |
title |
A generalizable and accessible approach to machine learning with global satellite imagery |
title_short |
A generalizable and accessible approach to machine learning with global satellite imagery |
title_full |
A generalizable and accessible approach to machine learning with global satellite imagery |
title_fullStr |
A generalizable and accessible approach to machine learning with global satellite imagery |
title_full_unstemmed |
A generalizable and accessible approach to machine learning with global satellite imagery |
title_sort |
generalizable and accessible approach to machine learning with global satellite imagery |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/35ce16c6215c446488bcca5b7caf036c |
work_keys_str_mv |
AT estherrolf ageneralizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT jonathanproctor ageneralizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT tammacarleton ageneralizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT ianbolliger ageneralizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT vaishaalshankar ageneralizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT miyabiishihara ageneralizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT benjaminrecht ageneralizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT solomonhsiang ageneralizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT estherrolf generalizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT jonathanproctor generalizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT tammacarleton generalizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT ianbolliger generalizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT vaishaalshankar generalizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT miyabiishihara generalizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT benjaminrecht generalizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT solomonhsiang generalizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery |
_version_ |
1718379038606622720 |