Structures of tweety homolog proteins TTYH2 and TTYH3 reveal a Ca2+-dependent switch from intra- to intermembrane dimerization
Tweety Homologs (TTYHs) are highly conserved membrane proteins, whose functions remain poorly understood. Here, the authors present the cryo-EM structures of murine TTYH2 and TTYH3 that form cis-dimers in the presence of Ca2+, whereas in the absence of Ca2+ TTYH2 adopts monomeric and trans-dimeric s...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/35d41ab2716c4fb08b443aa80b6bed5c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Tweety Homologs (TTYHs) are highly conserved membrane proteins, whose functions remain poorly understood. Here, the authors present the cryo-EM structures of murine TTYH2 and TTYH3 that form cis-dimers in the presence of Ca2+, whereas in the absence of Ca2+ TTYH2 adopts monomeric and trans-dimeric structures. The presented structures lack ion conducting pathways, which is consistent with results from electrophysiology measurements. |
---|